[2] | 1 | <?php
|
---|
| 2 | /*=======================================================================
|
---|
| 3 | // File: JPGRAPH_PIE3D.PHP
|
---|
| 4 | // Description: 3D Pie plot extension for JpGraph
|
---|
| 5 | // Created: 2001-03-24
|
---|
| 6 | // Author: Johan Persson (johanp@aditus.nu)
|
---|
| 7 | // Ver: $Id: jpgraph_pie3d.php,v 1.46 2003/05/26 20:49:48 aditus Exp $
|
---|
| 8 | //
|
---|
| 9 | // License: This code is released under QPL
|
---|
| 10 | // Copyright (C) 2001,2002 Johan Persson
|
---|
| 11 | //========================================================================
|
---|
| 12 | */
|
---|
| 13 |
|
---|
| 14 | //===================================================
|
---|
| 15 | // CLASS PiePlot3D
|
---|
| 16 | // Description: Plots a 3D pie with a specified projection
|
---|
| 17 | // angle between 20 and 70 degrees.
|
---|
| 18 | //===================================================
|
---|
| 19 | class PiePlot3D extends PiePlot {
|
---|
| 20 | var $labelhintcolor="red",$showlabelhint=true,$labelmargin=0.30;
|
---|
| 21 | var $angle=50;
|
---|
| 22 | var $edgecolor="", $edgeweight=1;
|
---|
| 23 | var $iThickness=false;
|
---|
| 24 |
|
---|
| 25 | //---------------
|
---|
| 26 | // CONSTRUCTOR
|
---|
| 27 | function PiePlot3d(&$data) {
|
---|
| 28 | $this->radius = 0.5;
|
---|
| 29 | $this->data = $data;
|
---|
| 30 | $this->title = new Text("");
|
---|
| 31 | $this->title->SetFont(FF_FONT1,FS_BOLD);
|
---|
| 32 | $this->value = new DisplayValue();
|
---|
| 33 | $this->value->Show();
|
---|
| 34 | $this->value->SetFormat('%.0f%%');
|
---|
| 35 | }
|
---|
| 36 |
|
---|
| 37 | //---------------
|
---|
| 38 | // PUBLIC METHODS
|
---|
| 39 |
|
---|
| 40 | // Set label arrays
|
---|
| 41 | function SetLegends($aLegend) {
|
---|
| 42 | $this->legends = array_reverse($aLegend);
|
---|
| 43 | }
|
---|
| 44 |
|
---|
| 45 | function SetSliceColors($aColors) {
|
---|
| 46 | $this->setslicecolors = $aColors;
|
---|
| 47 | }
|
---|
| 48 |
|
---|
| 49 | function Legend(&$aGraph) {
|
---|
| 50 | parent::Legend($aGraph);
|
---|
| 51 | $aGraph->legend->txtcol = array_reverse($aGraph->legend->txtcol);
|
---|
| 52 | }
|
---|
| 53 |
|
---|
| 54 | function SetCSIMTargets($targets,$alts=null) {
|
---|
| 55 | $this->csimtargets = $targets;
|
---|
| 56 | $this->csimalts = $alts;
|
---|
| 57 | }
|
---|
| 58 |
|
---|
| 59 | // Should the slices be separated by a line? If color is specified as "" no line
|
---|
| 60 | // will be used to separate pie slices.
|
---|
| 61 | function SetEdge($aColor,$aWeight=1) {
|
---|
| 62 | $this->edgecolor = $aColor;
|
---|
| 63 | $this->edgeweight = $aWeight;
|
---|
| 64 | }
|
---|
| 65 |
|
---|
| 66 | // Specify projection angle for 3D in degrees
|
---|
| 67 | // Must be between 20 and 70 degrees
|
---|
| 68 | function SetAngle($a) {
|
---|
| 69 | if( $a<5 || $a>90 )
|
---|
| 70 | JpGraphError::Raise("PiePlot3D::SetAngle() 3D Pie projection angle must be between 5 and 85 degrees.");
|
---|
| 71 | else
|
---|
| 72 | $this->angle = $a;
|
---|
| 73 | }
|
---|
| 74 |
|
---|
| 75 | function AddSliceToCSIM($i,$xc,$yc,$height,$width,$thick,$sa,$ea) { //Slice number, ellipse centre (x,y), height, width, start angle, end angle
|
---|
| 76 |
|
---|
| 77 | $sa *= M_PI/180;
|
---|
| 78 | $ea *= M_PI/180;
|
---|
| 79 |
|
---|
| 80 | //add coordinates of the centre to the map
|
---|
| 81 | $coords = "$xc, $yc";
|
---|
| 82 |
|
---|
| 83 | //add coordinates of the first point on the arc to the map
|
---|
| 84 | $xp = floor($width*cos($sa)/2+$xc);
|
---|
| 85 | $yp = floor($yc-$height*sin($sa)/2);
|
---|
| 86 | $coords.= ", $xp, $yp";
|
---|
| 87 |
|
---|
| 88 | //If on the front half, add the thickness offset
|
---|
| 89 | if ($sa >= M_PI && $sa <= 2*M_PI*1.01) {
|
---|
| 90 | $yp = floor($yp+$thick);
|
---|
| 91 | $coords.= ", $xp, $yp";
|
---|
| 92 | }
|
---|
| 93 |
|
---|
| 94 | //add coordinates every 0.2 radians
|
---|
| 95 | $a=$sa+0.2;
|
---|
| 96 | while ($a<$ea) {
|
---|
| 97 | $xp = floor($width*cos($a)/2+$xc);
|
---|
| 98 | if ($a >= M_PI && $a <= 2*M_PI*1.01) {
|
---|
| 99 | $yp = floor($yc-($height*sin($a)/2)+$thick);
|
---|
| 100 | } else {
|
---|
| 101 | $yp = floor($yc-$height*sin($a)/2);
|
---|
| 102 | }
|
---|
| 103 | $coords.= ", $xp, $yp";
|
---|
| 104 | $a += 0.2;
|
---|
| 105 | }
|
---|
| 106 |
|
---|
| 107 | //Add the last point on the arc
|
---|
| 108 | $xp = floor($width*cos($ea)/2+$xc);
|
---|
| 109 | $yp = floor($yc-$height*sin($ea)/2);
|
---|
| 110 |
|
---|
| 111 |
|
---|
| 112 | if ($ea >= M_PI && $ea <= 2*M_PI*1.01) {
|
---|
| 113 | $coords.= ", $xp, ".floor($yp+$thick);
|
---|
| 114 | }
|
---|
| 115 | $coords.= ", $xp, $yp";
|
---|
| 116 | $alt='';
|
---|
| 117 | if( !empty($this->csimalts[$i]) ) {
|
---|
| 118 | $tmp=sprintf($this->csimalts[$i],$this->data[$i]);
|
---|
| 119 | $alt="alt=\"$tmp\" title=\"$tmp\"";
|
---|
| 120 | }
|
---|
| 121 | if( !empty($this->csimtargets[$i]) )
|
---|
| 122 | $this->csimareas .= "<area shape=\"poly\" coords=\"$coords\" href=\"".$this->csimtargets[$i]."\" $alt>\n";
|
---|
| 123 | }
|
---|
| 124 |
|
---|
| 125 | function SetLabels($aLabels,$aLblPosAdj="auto") {
|
---|
| 126 | $this->labels = $aLabels;
|
---|
| 127 | $this->ilabelposadj=$aLblPosAdj;
|
---|
| 128 | }
|
---|
| 129 |
|
---|
| 130 |
|
---|
| 131 | // Distance from the pie to the labels
|
---|
| 132 | function SetLabelMargin($m) {
|
---|
| 133 | assert($m>0 && $m<1);
|
---|
| 134 | $this->labelmargin=$m;
|
---|
| 135 | }
|
---|
| 136 |
|
---|
| 137 | // Show a thin line from the pie to the label for a specific slice
|
---|
| 138 | function ShowLabelHint($f=true) {
|
---|
| 139 | $this->showlabelhint=$f;
|
---|
| 140 | }
|
---|
| 141 |
|
---|
| 142 | // Set color of hint line to label for each slice
|
---|
| 143 | function SetLabelHintColor($c) {
|
---|
| 144 | $this->labelhintcolor=$c;
|
---|
| 145 | }
|
---|
| 146 |
|
---|
| 147 | function SetHeight($aHeight) {
|
---|
| 148 | $this->iThickness = $aHeight;
|
---|
| 149 | }
|
---|
| 150 |
|
---|
| 151 |
|
---|
| 152 | // Normalize Angle between 0-360
|
---|
| 153 | function NormAngle($a) {
|
---|
| 154 | // Normalize anle to 0 to 2M_PI
|
---|
| 155 | //
|
---|
| 156 | if( $a > 0 ) {
|
---|
| 157 | while($a > 360) $a -= 360;
|
---|
| 158 | }
|
---|
| 159 | else {
|
---|
| 160 | while($a < 0) $a += 360;
|
---|
| 161 | }
|
---|
| 162 | if( $a < 0 )
|
---|
| 163 | $a = 360 + $a;
|
---|
| 164 |
|
---|
| 165 | if( $a == 360 ) $a=0;
|
---|
| 166 | return $a;
|
---|
| 167 | }
|
---|
| 168 |
|
---|
| 169 |
|
---|
| 170 |
|
---|
| 171 | // Draw one 3D pie slice at position ($xc,$yc) with height $z
|
---|
| 172 | function Pie3DSlice($img,$xc,$yc,$w,$h,$sa,$ea,$z,$fillcolor,$shadow=0.65) {
|
---|
| 173 |
|
---|
| 174 | // Due to the way the 3D Pie algorithm works we are
|
---|
| 175 | // guaranteed that any slice we get into this method
|
---|
| 176 | // belongs to either the left or right side of the
|
---|
| 177 | // pie ellipse. Hence, no slice will cross 90 or 270
|
---|
| 178 | // point.
|
---|
| 179 | if( ($sa < 90 && $ea > 90) || ( ($sa > 90 && $sa < 270) && $ea > 270) ) {
|
---|
| 180 | JpGraphError::Raise('Internal assertion failed. Pie3D::Pie3DSlice');
|
---|
| 181 | exit(1);
|
---|
| 182 | }
|
---|
| 183 |
|
---|
| 184 | $p[] = array();
|
---|
| 185 |
|
---|
| 186 | // Setup pre-calculated values
|
---|
| 187 | $rsa = $sa/180*M_PI; // to Rad
|
---|
| 188 | $rea = $ea/180*M_PI; // to Rad
|
---|
| 189 | $sinsa = sin($rsa);
|
---|
| 190 | $cossa = cos($rsa);
|
---|
| 191 | $sinea = sin($rea);
|
---|
| 192 | $cosea = cos($rea);
|
---|
| 193 |
|
---|
| 194 | // p[] is the points for the overall slice and
|
---|
| 195 | // pt[] is the points for the top pie
|
---|
| 196 |
|
---|
| 197 | // Angular step when approximating the arc with a polygon train.
|
---|
| 198 | $step = 0.05;
|
---|
| 199 |
|
---|
| 200 | if( $sa >= 270 ) {
|
---|
| 201 | if( $ea > 360 || ($ea > 0 && $ea <= 90) ) {
|
---|
| 202 | if( $ea > 0 && $ea <= 90 ) {
|
---|
| 203 | // Adjust angle to simplify conditions in loops
|
---|
| 204 | $rea += 2*M_PI;
|
---|
| 205 | }
|
---|
| 206 |
|
---|
| 207 | $p = array($xc,$yc,$xc,$yc+$z,
|
---|
| 208 | $xc+$w*$cossa,$z+$yc-$h*$sinsa);
|
---|
| 209 | $pt = array($xc,$yc,$xc+$w*$cossa,$yc-$h*$sinsa);
|
---|
| 210 |
|
---|
| 211 | for( $a=$rsa; $a < 2*M_PI; $a += $step ) {
|
---|
| 212 | $tca = cos($a);
|
---|
| 213 | $tsa = sin($a);
|
---|
| 214 | $p[] = $xc+$w*$tca;
|
---|
| 215 | $p[] = $z+$yc-$h*$tsa;
|
---|
| 216 | $pt[] = $xc+$w*$tca;
|
---|
| 217 | $pt[] = $yc-$h*$tsa;
|
---|
| 218 | }
|
---|
| 219 |
|
---|
| 220 | $pt[] = $xc+$w;
|
---|
| 221 | $pt[] = $yc;
|
---|
| 222 |
|
---|
| 223 | $p[] = $xc+$w;
|
---|
| 224 | $p[] = $z+$yc;
|
---|
| 225 | $p[] = $xc+$w;
|
---|
| 226 | $p[] = $yc;
|
---|
| 227 | $p[] = $xc;
|
---|
| 228 | $p[] = $yc;
|
---|
| 229 |
|
---|
| 230 | for( $a=2*M_PI+$step; $a < $rea; $a += $step ) {
|
---|
| 231 | $pt[] = $xc + $w*cos($a);
|
---|
| 232 | $pt[] = $yc - $h*sin($a);
|
---|
| 233 | }
|
---|
| 234 |
|
---|
| 235 | $pt[] = $xc+$w*$cosea;
|
---|
| 236 | $pt[] = $yc-$h*$sinea;
|
---|
| 237 | $pt[] = $xc;
|
---|
| 238 | $pt[] = $yc;
|
---|
| 239 |
|
---|
| 240 | }
|
---|
| 241 | else {
|
---|
| 242 | $p = array($xc,$yc,$xc,$yc+$z,
|
---|
| 243 | $xc+$w*$cossa,$z+$yc-$h*$sinsa);
|
---|
| 244 | $pt = array($xc,$yc,$xc+$w*$cossa,$yc-$h*$sinsa);
|
---|
| 245 |
|
---|
| 246 | $rea = $rea == 0.0 ? 2*M_PI : $rea;
|
---|
| 247 | for( $a=$rsa; $a < $rea; $a += $step ) {
|
---|
| 248 | $tca = cos($a);
|
---|
| 249 | $tsa = sin($a);
|
---|
| 250 | $p[] = $xc+$w*$tca;
|
---|
| 251 | $p[] = $z+$yc-$h*$tsa;
|
---|
| 252 | $pt[] = $xc+$w*$tca;
|
---|
| 253 | $pt[] = $yc-$h*$tsa;
|
---|
| 254 | }
|
---|
| 255 |
|
---|
| 256 | $pt[] = $xc+$w*$cosea;
|
---|
| 257 | $pt[] = $yc-$h*$sinea;
|
---|
| 258 | $pt[] = $xc;
|
---|
| 259 | $pt[] = $yc;
|
---|
| 260 |
|
---|
| 261 | $p[] = $xc+$w*$cosea;
|
---|
| 262 | $p[] = $z+$yc-$h*$sinea;
|
---|
| 263 | $p[] = $xc+$w*$cosea;
|
---|
| 264 | $p[] = $yc-$h*$sinea;
|
---|
| 265 | $p[] = $xc;
|
---|
| 266 | $p[] = $yc;
|
---|
| 267 | }
|
---|
| 268 | }
|
---|
| 269 | elseif( $sa >= 180 ) {
|
---|
| 270 | $p = array($xc,$yc,$xc,$yc+$z,$xc+$w*$cosea,$z+$yc-$h*$sinea);
|
---|
| 271 | $pt = array($xc,$yc,$xc+$w*$cosea,$yc-$h*$sinea);
|
---|
| 272 |
|
---|
| 273 | for( $a=$rea; $a>$rsa; $a -= $step ) {
|
---|
| 274 | $tca = cos($a);
|
---|
| 275 | $tsa = sin($a);
|
---|
| 276 | $p[] = $xc+$w*$tca;
|
---|
| 277 | $p[] = $z+$yc-$h*$tsa;
|
---|
| 278 | $pt[] = $xc+$w*$tca;
|
---|
| 279 | $pt[] = $yc-$h*$tsa;
|
---|
| 280 | }
|
---|
| 281 |
|
---|
| 282 | $pt[] = $xc+$w*$cossa;
|
---|
| 283 | $pt[] = $yc-$h*$sinsa;
|
---|
| 284 | $pt[] = $xc;
|
---|
| 285 | $pt[] = $yc;
|
---|
| 286 |
|
---|
| 287 | $p[] = $xc+$w*$cossa;
|
---|
| 288 | $p[] = $z+$yc-$h*$sinsa;
|
---|
| 289 | $p[] = $xc+$w*$cossa;
|
---|
| 290 | $p[] = $yc-$h*$sinsa;
|
---|
| 291 | $p[] = $xc;
|
---|
| 292 | $p[] = $yc;
|
---|
| 293 |
|
---|
| 294 | }
|
---|
| 295 | elseif( $sa >= 90 ) {
|
---|
| 296 | if( $ea > 180 ) {
|
---|
| 297 | $p = array($xc,$yc,$xc,$yc+$z,$xc+$w*$cosea,$z+$yc-$h*$sinea);
|
---|
| 298 | $pt = array($xc,$yc,$xc+$w*$cosea,$yc-$h*$sinea);
|
---|
| 299 |
|
---|
| 300 | for( $a=$rea; $a > M_PI; $a -= $step ) {
|
---|
| 301 | $tca = cos($a);
|
---|
| 302 | $tsa = sin($a);
|
---|
| 303 | $p[] = $xc+$w*$tca;
|
---|
| 304 | $p[] = $z + $yc - $h*$tsa;
|
---|
| 305 | $pt[] = $xc+$w*$tca;
|
---|
| 306 | $pt[] = $yc-$h*$tsa;
|
---|
| 307 | }
|
---|
| 308 |
|
---|
| 309 | $p[] = $xc-$w;
|
---|
| 310 | $p[] = $z+$yc;
|
---|
| 311 | $p[] = $xc-$w;
|
---|
| 312 | $p[] = $yc;
|
---|
| 313 | $p[] = $xc;
|
---|
| 314 | $p[] = $yc;
|
---|
| 315 |
|
---|
| 316 | $pt[] = $xc-$w;
|
---|
| 317 | $pt[] = $z+$yc;
|
---|
| 318 | $pt[] = $xc-$w;
|
---|
| 319 | $pt[] = $yc;
|
---|
| 320 |
|
---|
| 321 | for( $a=M_PI-$step; $a > $rsa; $a -= $step ) {
|
---|
| 322 | $pt[] = $xc + $w*cos($a);
|
---|
| 323 | $pt[] = $yc - $h*sin($a);
|
---|
| 324 | }
|
---|
| 325 |
|
---|
| 326 | $pt[] = $xc+$w*$cossa;
|
---|
| 327 | $pt[] = $yc-$h*$sinsa;
|
---|
| 328 | $pt[] = $xc;
|
---|
| 329 | $pt[] = $yc;
|
---|
| 330 |
|
---|
| 331 | }
|
---|
| 332 | else { // $sa >= 90 && $ea <= 180
|
---|
| 333 | $p = array($xc,$yc,$xc,$yc+$z,
|
---|
| 334 | $xc+$w*$cosea,$z+$yc-$h*$sinea,
|
---|
| 335 | $xc+$w*$cosea,$yc-$h*$sinea,
|
---|
| 336 | $xc,$yc);
|
---|
| 337 |
|
---|
| 338 | $pt = array($xc,$yc,$xc+$w*$cosea,$yc-$h*$sinea);
|
---|
| 339 |
|
---|
| 340 | for( $a=$rea; $a>$rsa; $a -= $step ) {
|
---|
| 341 | $pt[] = $xc + $w*cos($a);
|
---|
| 342 | $pt[] = $yc - $h*sin($a);
|
---|
| 343 | }
|
---|
| 344 |
|
---|
| 345 | $pt[] = $xc+$w*$cossa;
|
---|
| 346 | $pt[] = $yc-$h*$sinsa;
|
---|
| 347 | $pt[] = $xc;
|
---|
| 348 | $pt[] = $yc;
|
---|
| 349 |
|
---|
| 350 | }
|
---|
| 351 | }
|
---|
| 352 | else { // sa > 0 && ea < 90
|
---|
| 353 |
|
---|
| 354 | $p = array($xc,$yc,$xc,$yc+$z,
|
---|
| 355 | $xc+$w*$cossa,$z+$yc-$h*$sinsa,
|
---|
| 356 | $xc+$w*$cossa,$yc-$h*$sinsa,
|
---|
| 357 | $xc,$yc);
|
---|
| 358 |
|
---|
| 359 | $pt = array($xc,$yc,$xc+$w*$cossa,$yc-$h*$sinsa);
|
---|
| 360 |
|
---|
| 361 | for( $a=$rsa; $a < $rea; $a += $step ) {
|
---|
| 362 | $pt[] = $xc + $w*cos($a);
|
---|
| 363 | $pt[] = $yc - $h*sin($a);
|
---|
| 364 | }
|
---|
| 365 |
|
---|
| 366 | $pt[] = $xc+$w*$cosea;
|
---|
| 367 | $pt[] = $yc-$h*$sinea;
|
---|
| 368 | $pt[] = $xc;
|
---|
| 369 | $pt[] = $yc;
|
---|
| 370 | }
|
---|
| 371 |
|
---|
| 372 | $img->PushColor($fillcolor.":".$shadow);
|
---|
| 373 | $img->FilledPolygon($p);
|
---|
| 374 | $img->PopColor();
|
---|
| 375 |
|
---|
| 376 | $img->PushColor($fillcolor);
|
---|
| 377 | $img->FilledPolygon($pt);
|
---|
| 378 | $img->PopColor();
|
---|
| 379 | }
|
---|
| 380 |
|
---|
| 381 | // Draw a 3D Pie
|
---|
| 382 | function Pie3D($aaoption,$img,$data,$colors,$xc,$yc,$d,$angle,$z,
|
---|
| 383 | $shadow=0.65,$startangle=0,$edgecolor="",$edgeweight=1) {
|
---|
| 384 |
|
---|
| 385 | //---------------------------------------------------------------------------
|
---|
| 386 | // As usual the algorithm get more complicated than I originally
|
---|
| 387 | // envisioned. I believe that this is as simple as it is possible
|
---|
| 388 | // to do it with the features I want. It's a good exercise to start
|
---|
| 389 | // thinking on how to do this to convince your self that all this
|
---|
| 390 | // is really needed for the general case.
|
---|
| 391 | //
|
---|
| 392 | // The algorithm two draw 3D pies without "real 3D" is done in
|
---|
| 393 | // two steps.
|
---|
| 394 | // First imagine the pie cut in half through a thought line between
|
---|
| 395 | // 12'a clock and 6'a clock. It now easy to imagine that we can plot
|
---|
| 396 | // the individual slices for each half by starting with the topmost
|
---|
| 397 | // pie slice and continue down to 6'a clock.
|
---|
| 398 | //
|
---|
| 399 | // In the algortithm this is done in three principal steps
|
---|
| 400 | // Step 1. Do the knife cut to ensure by splitting slices that extends
|
---|
| 401 | // over the cut line. This is done by splitting the original slices into
|
---|
| 402 | // upto 3 subslices.
|
---|
| 403 | // Step 2. Find the top slice for each half
|
---|
| 404 | // Step 3. Draw the slices from top to bottom
|
---|
| 405 | //
|
---|
| 406 | // The thing that slightly complicates this scheme with all the
|
---|
| 407 | // angle comparisons below is that we can have an arbitrary start
|
---|
| 408 | // angle so we must take into account the different equivalence classes.
|
---|
| 409 | // For the same reason we must walk through the angle array in a
|
---|
| 410 | // modulo fashion.
|
---|
| 411 | //
|
---|
| 412 | // Limitations of algorithm:
|
---|
| 413 | // * A small exploded slice which crosses the 270 degree point
|
---|
| 414 | // will get slightly nagged close to the center due to the fact that
|
---|
| 415 | // we print the slices in Z-order and that the slice left part
|
---|
| 416 | // get printed first and might get slightly nagged by a larger
|
---|
| 417 | // slice on the right side just before the right part of the small
|
---|
| 418 | // slice. Not a major problem though.
|
---|
| 419 | //---------------------------------------------------------------------------
|
---|
| 420 |
|
---|
| 421 |
|
---|
| 422 | // Determine the height of the ellippse which gives an
|
---|
| 423 | // indication of the inclination angle
|
---|
| 424 | $h = ($angle/90.0)*$d;
|
---|
| 425 | $sum = 0;
|
---|
| 426 | for($i=0; $i<count($data); ++$i ) {
|
---|
| 427 | $sum += $data[$i];
|
---|
| 428 | }
|
---|
| 429 |
|
---|
| 430 | // Special optimization
|
---|
| 431 | if( $sum==0 ) return;
|
---|
| 432 |
|
---|
| 433 | // Setup the start
|
---|
| 434 | $accsum = 0;
|
---|
| 435 | $a = $startangle;
|
---|
| 436 | $a = $this->NormAngle($a);
|
---|
| 437 |
|
---|
| 438 | //
|
---|
| 439 | // Step 1 . Split all slices that crosses 90 or 270
|
---|
| 440 | //
|
---|
| 441 | $idx=0;
|
---|
| 442 | $adjexplode=array();
|
---|
| 443 | $numcolors = count($colors);
|
---|
| 444 | for($i=0; $i<count($data); ++$i, ++$idx ) {
|
---|
| 445 | $da = $data[$i]/$sum * 360;
|
---|
| 446 |
|
---|
| 447 | if( empty($this->explode_radius[$i]) )
|
---|
| 448 | $this->explode_radius[$i]=0;
|
---|
| 449 |
|
---|
| 450 | $expscale=1;
|
---|
| 451 | if( $aaoption == 1 )
|
---|
| 452 | $expscale=2;
|
---|
| 453 |
|
---|
| 454 | $la = $a + $da/2;
|
---|
| 455 | $explode = array( $xc + $this->explode_radius[$i]*cos($la*M_PI/180)*$expscale,
|
---|
| 456 | $yc - $this->explode_radius[$i]*sin($la*M_PI/180) * ($h/$d) *$expscale );
|
---|
| 457 | $adjexplode[$idx] = $explode;
|
---|
| 458 | $labeldata[$i] = array($la,$explode[0],$explode[1]);
|
---|
| 459 | $originalangles[$i] = array($a,$a+$da);
|
---|
| 460 |
|
---|
| 461 | $ne = $this->NormAngle($a+$da);
|
---|
| 462 | if( $da <= 180 ) {
|
---|
| 463 | // If the slice size is <= 90 it can at maximum cut across
|
---|
| 464 | // one boundary (either 90 or 270) where it needs to be split
|
---|
| 465 | $split=-1; // no split
|
---|
| 466 | if( ($da<=90 && ($a <= 90 && $ne > 90)) ||
|
---|
| 467 | (($da <= 180 && $da >90) && (($a < 90 || $a >= 270) && $ne > 90)) ) {
|
---|
| 468 | $split = 90;
|
---|
| 469 | }
|
---|
| 470 | elseif( ($da<=90 && ($a <= 270 && $ne > 270)) ||
|
---|
| 471 | (($da<=180 && $da>90) && ($a >= 90 && $a < 270 && ($a+$da) > 270 )) ) {
|
---|
| 472 | $split = 270;
|
---|
| 473 | }
|
---|
| 474 | if( $split > 0 ) { // split in two
|
---|
| 475 | $angles[$idx] = array($a,$split);
|
---|
| 476 | $adjcolors[$idx] = $colors[$i % $numcolors];
|
---|
| 477 | $adjexplode[$idx] = $explode;
|
---|
| 478 | $angles[++$idx] = array($split,$ne);
|
---|
| 479 | $adjcolors[$idx] = $colors[$i % $numcolors];
|
---|
| 480 | $adjexplode[$idx] = $explode;
|
---|
| 481 | }
|
---|
| 482 | else { // no split
|
---|
| 483 | $angles[$idx] = array($a,$ne);
|
---|
| 484 | $adjcolors[$idx] = $colors[$i % $numcolors];
|
---|
| 485 | $adjexplode[$idx] = $explode;
|
---|
| 486 | }
|
---|
| 487 | }
|
---|
| 488 | else {
|
---|
| 489 | // da>180
|
---|
| 490 | // Slice may, depending on position, cross one or two
|
---|
| 491 | // bonudaries
|
---|
| 492 |
|
---|
| 493 | if( $a < 90 )
|
---|
| 494 | $split = 90;
|
---|
| 495 | elseif( $a <= 270 )
|
---|
| 496 | $split = 270;
|
---|
| 497 | else
|
---|
| 498 | $split = 90;
|
---|
| 499 |
|
---|
| 500 | $angles[$idx] = array($a,$split);
|
---|
| 501 | $adjcolors[$idx] = $colors[$i % $numcolors];
|
---|
| 502 | $adjexplode[$idx] = $explode;
|
---|
| 503 | //if( $a+$da > 360-$split ) {
|
---|
| 504 | // For slices larger than 270 degrees we might cross
|
---|
| 505 | // another boundary as well. This means that we must
|
---|
| 506 | // split the slice further. The comparison gets a little
|
---|
| 507 | // bit complicated since we must take into accound that
|
---|
| 508 | // a pie might have a startangle >0 and hence a slice might
|
---|
| 509 | // wrap around the 0 angle.
|
---|
| 510 | // Three cases:
|
---|
| 511 | // a) Slice starts before 90 and hence gets a split=90, but
|
---|
| 512 | // we must also check if we need to split at 270
|
---|
| 513 | // b) Slice starts after 90 but before 270 and slices
|
---|
| 514 | // crosses 90 (after a wrap around of 0)
|
---|
| 515 | // c) If start is > 270 (hence the firstr split is at 90)
|
---|
| 516 | // and the slice is so large that it goes all the way
|
---|
| 517 | // around 270.
|
---|
| 518 | if( ($a < 90 && ($a+$da > 270)) ||
|
---|
| 519 | ($a > 90 && $a<=270 && ($a+$da>360+90) ) ||
|
---|
| 520 | ($a > 270 && $this->NormAngle($a+$da)>270) ) {
|
---|
| 521 | $angles[++$idx] = array($split,360-$split);
|
---|
| 522 | $adjcolors[$idx] = $colors[$i % $numcolors];
|
---|
| 523 | $adjexplode[$idx] = $explode;
|
---|
| 524 | $angles[++$idx] = array(360-$split,$ne);
|
---|
| 525 | $adjcolors[$idx] = $colors[$i % $numcolors];
|
---|
| 526 | $adjexplode[$idx] = $explode;
|
---|
| 527 | }
|
---|
| 528 | else {
|
---|
| 529 | // Just a simple split to the previous decided
|
---|
| 530 | // angle.
|
---|
| 531 | $angles[++$idx] = array($split,$ne);
|
---|
| 532 | $adjcolors[$idx] = $colors[$i % $numcolors];
|
---|
| 533 | $adjexplode[$idx] = $explode;
|
---|
| 534 | }
|
---|
| 535 | }
|
---|
| 536 | $a += $da;
|
---|
| 537 | $a = $this->NormAngle($a);
|
---|
| 538 | }
|
---|
| 539 |
|
---|
| 540 | // Total number of slices
|
---|
| 541 | $n = count($angles);
|
---|
| 542 |
|
---|
| 543 | for($i=0; $i<$n; ++$i) {
|
---|
| 544 | list($dbgs,$dbge) = $angles[$i];
|
---|
| 545 | }
|
---|
| 546 |
|
---|
| 547 | //
|
---|
| 548 | // Step 2. Find start index (first pie that starts in upper left quadrant)
|
---|
| 549 | //
|
---|
| 550 | $minval = $angles[0][0];
|
---|
| 551 | $min = 0;
|
---|
| 552 | for( $i=0; $i<$n; ++$i ) {
|
---|
| 553 | if( $angles[$i][0] < $minval ) {
|
---|
| 554 | $minval = $angles[$i][0];
|
---|
| 555 | $min = $i;
|
---|
| 556 | }
|
---|
| 557 | }
|
---|
| 558 | $j = $min;
|
---|
| 559 | $cnt = 0;
|
---|
| 560 | while( $angles[$j][1] <= 90 ) {
|
---|
| 561 | $j++;
|
---|
| 562 | if( $j>=$n) {
|
---|
| 563 | $j=0;
|
---|
| 564 | }
|
---|
| 565 | if( $cnt > $n ) {
|
---|
| 566 | JpGraphError::Raise("Pie3D Internal error (#1). Trying to wrap twice when looking for start index");
|
---|
| 567 | }
|
---|
| 568 | ++$cnt;
|
---|
| 569 | }
|
---|
| 570 | $start = $j;
|
---|
| 571 |
|
---|
| 572 | //
|
---|
| 573 | // Step 3. Print slices in z-order
|
---|
| 574 | //
|
---|
| 575 | $cnt = 0;
|
---|
| 576 |
|
---|
| 577 | // First stroke all the slices between 90 and 270 (left half circle)
|
---|
| 578 | // counterclockwise
|
---|
| 579 |
|
---|
| 580 | while( $angles[$j][0] < 270 && $aaoption !== 2 ) {
|
---|
| 581 |
|
---|
| 582 | list($x,$y) = $adjexplode[$j];
|
---|
| 583 |
|
---|
| 584 | $this->Pie3DSlice($img,$x,$y,$d,$h,$angles[$j][0],$angles[$j][1],
|
---|
| 585 | $z,$adjcolors[$j],$shadow);
|
---|
| 586 |
|
---|
| 587 | $last = array($x,$y,$j);
|
---|
| 588 |
|
---|
| 589 | $j++;
|
---|
| 590 | if( $j >= $n ) $j=0;
|
---|
| 591 | if( $cnt > $n ) {
|
---|
| 592 | JpGraphError::Raise("Pie3D Internal Error: Z-Sorting algorithm for 3D Pies is not working properly (2). Trying to wrap twice while stroking.");
|
---|
| 593 | }
|
---|
| 594 | ++$cnt;
|
---|
| 595 | }
|
---|
| 596 |
|
---|
| 597 | $slice_left = $n-$cnt;
|
---|
| 598 | $j=$start-1;
|
---|
| 599 | if($j<0) $j=$n-1;
|
---|
| 600 | $cnt = 0;
|
---|
| 601 |
|
---|
| 602 | // The stroke all slices from 90 to -90 (right half circle)
|
---|
| 603 | // clockwise
|
---|
| 604 | while( $cnt < $slice_left && $aaoption !== 2 ) {
|
---|
| 605 |
|
---|
| 606 | list($x,$y) = $adjexplode[$j];
|
---|
| 607 |
|
---|
| 608 | $this->Pie3DSlice($img,$x,$y,$d,$h,$angles[$j][0],$angles[$j][1],
|
---|
| 609 | $z,$adjcolors[$j],$shadow);
|
---|
| 610 | $j--;
|
---|
| 611 | if( $cnt > $n ) {
|
---|
| 612 | JpGraphError::Raise("Pie3D Internal Error: Z-Sorting algorithm for 3D Pies is not working properly (2). Trying to wrap twice while stroking.");
|
---|
| 613 | }
|
---|
| 614 | if($j<0) $j=$n-1;
|
---|
| 615 | $cnt++;
|
---|
| 616 | }
|
---|
| 617 |
|
---|
| 618 | // Now do a special thing. Stroke the last slice on the left
|
---|
| 619 | // halfcircle one more time. This is needed in the case where
|
---|
| 620 | // the slice close to 270 have been exploded. In that case the
|
---|
| 621 | // part of the slice close to the center of the pie might be
|
---|
| 622 | // slightly nagged.
|
---|
| 623 | if( $aaoption !== 2 )
|
---|
| 624 | $this->Pie3DSlice($img,$last[0],$last[1],$d,$h,$angles[$last[2]][0],
|
---|
| 625 | $angles[$last[2]][1],$z,$adjcolors[$last[2]],$shadow);
|
---|
| 626 |
|
---|
| 627 |
|
---|
| 628 | if( $aaoption !== 1 ) {
|
---|
| 629 | // Now print possible labels and add csim
|
---|
| 630 | $img->SetFont($this->value->ff,$this->value->fs);
|
---|
| 631 | $margin = $img->GetFontHeight()/2;
|
---|
| 632 | for($i=0; $i < count($data); ++$i ) {
|
---|
| 633 | $la = $labeldata[$i][0];
|
---|
| 634 | $x = $labeldata[$i][1] + cos($la*M_PI/180)*($d+$margin);
|
---|
| 635 | $y = $labeldata[$i][2] - sin($la*M_PI/180)*($h+$margin);
|
---|
| 636 | if( $la > 180 && $la < 360 ) $y += $z;
|
---|
| 637 | if( $this->labeltype == 0 )
|
---|
| 638 | if( $sum > 0 )
|
---|
| 639 | $l = 100*$data[$i]/$sum;
|
---|
| 640 | else
|
---|
| 641 | $l = 0;
|
---|
| 642 | else
|
---|
| 643 | $l = $data[$i];
|
---|
| 644 | if( isset($this->labels[$i]) && is_string($this->labels[$i]) )
|
---|
| 645 | $l=sprintf($this->labels[$i],$l);
|
---|
| 646 |
|
---|
| 647 | $this->StrokeLabels($l,$img,$labeldata[$i][0]*M_PI/180,$x,$y,$z);
|
---|
| 648 |
|
---|
| 649 | $this->AddSliceToCSIM($i,$labeldata[$i][1],$labeldata[$i][2],$h*2,$d*2,$z,
|
---|
| 650 | $originalangles[$i][0],$originalangles[$i][1]);
|
---|
| 651 | }
|
---|
| 652 | }
|
---|
| 653 |
|
---|
| 654 | //
|
---|
| 655 | // Finally add potential lines in pie
|
---|
| 656 | //
|
---|
| 657 |
|
---|
| 658 | if( $edgecolor=="" || $aaoption !== 0 ) return;
|
---|
| 659 |
|
---|
| 660 | $accsum = 0;
|
---|
| 661 | $a = $startangle;
|
---|
| 662 | $a = $this->NormAngle($a);
|
---|
| 663 |
|
---|
| 664 | $a *= M_PI/180.0;
|
---|
| 665 |
|
---|
| 666 | $idx=0;
|
---|
| 667 | $img->PushColor($edgecolor);
|
---|
| 668 | $img->SetLineWeight($edgeweight);
|
---|
| 669 |
|
---|
| 670 | $fulledge = true;
|
---|
| 671 | for($i=0; $i < count($data) && $fulledge; ++$i ) {
|
---|
| 672 | if( empty($this->explode_radius[$i]) )
|
---|
| 673 | $this->explode_radius[$i]=0;
|
---|
| 674 | if( $this->explode_radius[$i] > 0 ) {
|
---|
| 675 | $fulledge = false;
|
---|
| 676 | }
|
---|
| 677 | }
|
---|
| 678 |
|
---|
| 679 |
|
---|
| 680 | for($i=0; $i < count($data); ++$i, ++$idx ) {
|
---|
| 681 |
|
---|
| 682 | $da = $data[$i]/$sum * 2*M_PI;
|
---|
| 683 | $this->StrokeFullSliceFrame($img,$xc,$yc,$a,$a+$da,$d,$h,$z,$edgecolor,
|
---|
| 684 | $this->explode_radius[$i],$fulledge);
|
---|
| 685 | $a += $da;
|
---|
| 686 | }
|
---|
| 687 | $img->PopColor();
|
---|
| 688 | }
|
---|
| 689 |
|
---|
| 690 | function StrokeFullSliceFrame($img,$xc,$yc,$sa,$ea,$w,$h,$z,$edgecolor,$exploderadius,$fulledge) {
|
---|
| 691 | $step = 0.02;
|
---|
| 692 |
|
---|
| 693 | if( $exploderadius > 0 ) {
|
---|
| 694 | $la = ($sa+$ea)/2;
|
---|
| 695 | $xc += $exploderadius*cos($la);
|
---|
| 696 | $yc -= $exploderadius*sin($la) * ($h/$w) ;
|
---|
| 697 |
|
---|
| 698 | }
|
---|
| 699 |
|
---|
| 700 | $p = array($xc,$yc,$xc+$w*cos($sa),$yc-$h*sin($sa));
|
---|
| 701 |
|
---|
| 702 | for($a=$sa; $a < $ea; $a += $step ) {
|
---|
| 703 | $p[] = $xc + $w*cos($a);
|
---|
| 704 | $p[] = $yc - $h*sin($a);
|
---|
| 705 | }
|
---|
| 706 |
|
---|
| 707 | $p[] = $xc+$w*cos($ea);
|
---|
| 708 | $p[] = $yc-$h*sin($ea);
|
---|
| 709 | $p[] = $xc;
|
---|
| 710 | $p[] = $yc;
|
---|
| 711 |
|
---|
| 712 | $img->SetColor($edgecolor);
|
---|
| 713 | $img->Polygon($p);
|
---|
| 714 |
|
---|
| 715 | // Unfortunately we can't really draw the full edge around the whole of
|
---|
| 716 | // of the slice if any of the slices are exploded. The reason is that
|
---|
| 717 | // this algorithm is to simply. There are cases where the edges will
|
---|
| 718 | // "overwrite" other slices when they have been exploded.
|
---|
| 719 | // Doing the full, proper 3D hidden lines stiff is actually quite
|
---|
| 720 | // tricky. So for exploded pies we only draw the top edge. Not perfect
|
---|
| 721 | // but the "real" solution is much more complicated.
|
---|
| 722 | if( $fulledge && !( $sa > 0 && $sa < M_PI && $ea < M_PI) ) {
|
---|
| 723 |
|
---|
| 724 | if($sa < M_PI && $ea > M_PI)
|
---|
| 725 | $sa = M_PI;
|
---|
| 726 |
|
---|
| 727 | if($sa < 2*M_PI && (($ea >= 2*M_PI) || ($ea > 0 && $ea < $sa ) ) )
|
---|
| 728 | $ea = 2*M_PI;
|
---|
| 729 |
|
---|
| 730 | if( $sa >= M_PI && $ea <= 2*M_PI ) {
|
---|
| 731 | $p = array($xc + $w*cos($sa),$yc - $h*sin($sa),
|
---|
| 732 | $xc + $w*cos($sa),$z + $yc - $h*sin($sa));
|
---|
| 733 |
|
---|
| 734 | for($a=$sa+$step; $a < $ea; $a += $step ) {
|
---|
| 735 | $p[] = $xc + $w*cos($a);
|
---|
| 736 | $p[] = $z + $yc - $h*sin($a);
|
---|
| 737 | }
|
---|
| 738 | $p[] = $xc + $w*cos($ea);
|
---|
| 739 | $p[] = $z + $yc - $h*sin($ea);
|
---|
| 740 | $p[] = $xc + $w*cos($ea);
|
---|
| 741 | $p[] = $yc - $h*sin($ea);
|
---|
| 742 | $img->SetColor($edgecolor);
|
---|
| 743 | $img->Polygon($p);
|
---|
| 744 | }
|
---|
| 745 | }
|
---|
| 746 | }
|
---|
| 747 |
|
---|
| 748 | function Stroke($img,$aaoption=0) {
|
---|
| 749 |
|
---|
| 750 | // If user hasn't set the colors use the theme array
|
---|
| 751 | if( $this->setslicecolors==null ) {
|
---|
| 752 | $colors = array_keys($img->rgb->rgb_table);
|
---|
| 753 | sort($colors);
|
---|
| 754 | $idx_a=$this->themearr[$this->theme];
|
---|
| 755 | $ca = array();
|
---|
| 756 | $n = count($idx_a);
|
---|
| 757 | for($i=0; $i < $n; ++$i)
|
---|
| 758 | $ca[$i] = $colors[$idx_a[$i]];
|
---|
| 759 | }
|
---|
| 760 | else {
|
---|
| 761 | $ca = $this->setslicecolors;
|
---|
| 762 | }
|
---|
| 763 |
|
---|
| 764 | if( $this->posx <= 1 && $this->posx > 0 )
|
---|
| 765 | $xc = round($this->posx*$img->width);
|
---|
| 766 | else
|
---|
| 767 | $xc = $this->posx ;
|
---|
| 768 |
|
---|
| 769 | if( $this->posy <= 1 && $this->posy > 0 )
|
---|
| 770 | $yc = round($this->posy*$img->height);
|
---|
| 771 | else
|
---|
| 772 | $yc = $this->posy ;
|
---|
| 773 |
|
---|
| 774 | if( $this->radius <= 1 ) {
|
---|
| 775 | $width = floor($this->radius*min($img->width,$img->height));
|
---|
| 776 | // Make sure that the pie doesn't overflow the image border
|
---|
| 777 | // The 0.9 factor is simply an extra margin to leave some space
|
---|
| 778 | // between the pie an the border of the image.
|
---|
| 779 | $width = min($width,min($xc*0.9,($yc*90/$this->angle-$width/4)*0.9));
|
---|
| 780 | }
|
---|
| 781 | else {
|
---|
| 782 | $width = $this->radius * ($aaoption === 1 ? 2 : 1 ) ;
|
---|
| 783 | }
|
---|
| 784 |
|
---|
| 785 | // Add a sanity check for width
|
---|
| 786 | if( $width < 1 ) {
|
---|
| 787 | JpGraphError::Raise("Width for 3D Pie is 0. Specify a size > 0");
|
---|
| 788 | exit();
|
---|
| 789 | }
|
---|
| 790 |
|
---|
| 791 | // Establish a thickness. By default the thickness is a fifth of the
|
---|
| 792 | // pie slice width (=pie radius) but since the perspective depends
|
---|
| 793 | // on the inclination angle we use some heuristics to make the edge
|
---|
| 794 | // slightly thicker the less the angle.
|
---|
| 795 |
|
---|
| 796 | // Has user specified an absolute thickness? In that case use
|
---|
| 797 | // that instead
|
---|
| 798 |
|
---|
| 799 | if( $this->iThickness ) {
|
---|
| 800 | $thick = $this->iThickness;
|
---|
| 801 | $thick *= ($aaoption === 1 ? 2 : 1 );
|
---|
| 802 | }
|
---|
| 803 | else
|
---|
| 804 | $thick = $width/12;
|
---|
| 805 | $a = $this->angle;
|
---|
| 806 | if( $a <= 30 ) $thick *= 1.6;
|
---|
| 807 | elseif( $a <= 40 ) $thick *= 1.4;
|
---|
| 808 | elseif( $a <= 50 ) $thick *= 1.2;
|
---|
| 809 | elseif( $a <= 60 ) $thick *= 1.0;
|
---|
| 810 | elseif( $a <= 70 ) $thick *= 0.8;
|
---|
| 811 | elseif( $a <= 80 ) $thick *= 0.7;
|
---|
| 812 | else $thick *= 0.6;
|
---|
| 813 |
|
---|
| 814 | $thick = floor($thick);
|
---|
| 815 |
|
---|
| 816 | if( $this->explode_all )
|
---|
| 817 | for($i=0;$i<count($this->data);++$i)
|
---|
| 818 | $this->explode_radius[$i]=$this->explode_r;
|
---|
| 819 |
|
---|
| 820 | $this->Pie3D($aaoption,$img,$this->data, $ca, $xc, $yc, $width, $this->angle,
|
---|
| 821 | $thick, 0.65, $this->startangle, $this->edgecolor, $this->edgeweight);
|
---|
| 822 |
|
---|
| 823 | // Adjust title position
|
---|
| 824 | if( $aaoption != 1 ) {
|
---|
| 825 | $this->title->Pos($xc,$yc-$this->title->GetFontHeight($img)-$width/2-$this->title->margin, "center","bottom");
|
---|
| 826 | $this->title->Stroke($img);
|
---|
| 827 | }
|
---|
| 828 | }
|
---|
| 829 |
|
---|
| 830 | //---------------
|
---|
| 831 | // PRIVATE METHODS
|
---|
| 832 |
|
---|
| 833 | // Position the labels of each slice
|
---|
| 834 | function StrokeLabels($label,$img,$a,$xp,$yp,$z) {
|
---|
| 835 | $this->value->halign="left";
|
---|
| 836 | $this->value->valign="top";
|
---|
| 837 | $this->value->margin=0;
|
---|
| 838 |
|
---|
| 839 | // Position the axis title.
|
---|
| 840 | // dx, dy is the offset from the top left corner of the bounding box that sorrounds the text
|
---|
| 841 | // that intersects with the extension of the corresponding axis. The code looks a little
|
---|
| 842 | // bit messy but this is really the only way of having a reasonable position of the
|
---|
| 843 | // axis titles.
|
---|
| 844 | $img->SetFont($this->value->ff,$this->value->fs,$this->value->fsize);
|
---|
| 845 | $h=$img->GetTextHeight($label);
|
---|
| 846 | // For numeric values the format of the display value
|
---|
| 847 | // must be taken into account
|
---|
| 848 | if( is_numeric($label) ) {
|
---|
| 849 | if( $label > 0 )
|
---|
| 850 | $w=$img->GetTextWidth(sprintf($this->value->format,$label));
|
---|
| 851 | else
|
---|
| 852 | $w=$img->GetTextWidth(sprintf($this->value->negormat,$label));
|
---|
| 853 | }
|
---|
| 854 | else
|
---|
| 855 | $w=$img->GetTextWidth($label);
|
---|
| 856 | while( $a > 2*M_PI ) $a -= 2*M_PI;
|
---|
| 857 | if( $a>=7*M_PI/4 || $a <= M_PI/4 ) $dx=0;
|
---|
| 858 | if( $a>=M_PI/4 && $a <= 3*M_PI/4 ) $dx=($a-M_PI/4)*2/M_PI;
|
---|
| 859 | if( $a>=3*M_PI/4 && $a <= 5*M_PI/4 ) $dx=1;
|
---|
| 860 | if( $a>=5*M_PI/4 && $a <= 7*M_PI/4 ) $dx=(1-($a-M_PI*5/4)*2/M_PI);
|
---|
| 861 |
|
---|
| 862 | if( $a>=7*M_PI/4 ) $dy=(($a-M_PI)-3*M_PI/4)*2/M_PI;
|
---|
| 863 | if( $a<=M_PI/4 ) $dy=(1-$a*2/M_PI);
|
---|
| 864 | if( $a>=M_PI/4 && $a <= 3*M_PI/4 ) $dy=1;
|
---|
| 865 | if( $a>=3*M_PI/4 && $a <= 5*M_PI/4 ) $dy=(1-($a-3*M_PI/4)*2/M_PI);
|
---|
| 866 | if( $a>=5*M_PI/4 && $a <= 7*M_PI/4 ) $dy=0;
|
---|
| 867 |
|
---|
| 868 | $x = round($xp-$dx*$w);
|
---|
| 869 | $y = round($yp-$dy*$h);
|
---|
| 870 |
|
---|
| 871 | /*
|
---|
| 872 | // Mark anchor point for debugging
|
---|
| 873 | $img->SetColor('red');
|
---|
| 874 | $img->Line($xp-10,$yp,$xp+10,$yp);
|
---|
| 875 | $img->Line($xp,$yp-10,$xp,$yp+10);
|
---|
| 876 | */
|
---|
| 877 |
|
---|
| 878 | $this->value->Stroke($img,$label,$x,$y);
|
---|
| 879 | }
|
---|
| 880 | } // Class
|
---|
| 881 |
|
---|
| 882 | /* EOF */
|
---|
| 883 | ?>
|
---|