1 | <?php
|
---|
2 | /*=======================================================================
|
---|
3 | // File: JPGRAPH_REGSTAT.PHP
|
---|
4 | // Description: Regression and statistical analysis helper classes
|
---|
5 | // Created: 2002-12-01
|
---|
6 | // Author: Johan Persson (johanp@aditus.nu)
|
---|
7 | // Ver: $Id: jpgraph_regstat.php,v 1.2 2003/03/08 11:29:21 aditus Exp $
|
---|
8 | //
|
---|
9 | // License: This code is released under QPL
|
---|
10 | // Copyright (C) 2002 Johan Persson
|
---|
11 | //========================================================================
|
---|
12 | */
|
---|
13 |
|
---|
14 | //------------------------------------------------------------------------
|
---|
15 | // CLASS Spline
|
---|
16 | // Create a new data array from an existing data array but with more points.
|
---|
17 | // The new points are interpolated using a cubic spline algorithm
|
---|
18 | //------------------------------------------------------------------------
|
---|
19 | class Spline {
|
---|
20 | // 3:rd degree polynom approximation
|
---|
21 |
|
---|
22 | var $xdata,$ydata; // Data vectors
|
---|
23 | var $y2; // 2:nd derivate of ydata
|
---|
24 | var $n=0;
|
---|
25 |
|
---|
26 | function Spline($xdata,$ydata) {
|
---|
27 | $this->y2 = array();
|
---|
28 | $this->xdata = $xdata;
|
---|
29 | $this->ydata = $ydata;
|
---|
30 |
|
---|
31 | $n = count($ydata);
|
---|
32 | $this->n = $n;
|
---|
33 |
|
---|
34 | // Natural spline 2:derivate == 0 at endpoints
|
---|
35 | $this->y2[0] = 0.0;
|
---|
36 | $this->y2[$n-1] = 0.0;
|
---|
37 | $delta[0] = 0.0;
|
---|
38 |
|
---|
39 | // Calculate 2:nd derivate
|
---|
40 | for($i=1; $i < $n-1; ++$i) {
|
---|
41 | $d = ($xdata[$i+1]-$xdata[$i-1]);
|
---|
42 | if( $d == 0 ) {
|
---|
43 | JpGraphError::Raise('Invalid input data for spline. Two or more consecutive input X-values are equal. Each input X-value must differ since from a mathematical point of view it must be a one-to-one mapping, i.e. each X-value must correspond to exactly one Y-value.');
|
---|
44 | }
|
---|
45 | $s = ($xdata[$i]-$xdata[$i-1])/$d;
|
---|
46 | $p = $s*$this->y2[$i-1]+2.0;
|
---|
47 | $this->y2[$i] = ($s-1.0)/$p;
|
---|
48 | $delta[$i] = ($ydata[$i+1]-$ydata[$i])/($xdata[$i+1]-$xdata[$i]) -
|
---|
49 | ($ydata[$i]-$ydata[$i-1])/($xdata[$i]-$xdata[$i-1]);
|
---|
50 | $delta[$i] = (6.0*$delta[$i]/($xdata[$i+1]-$xdata[$i-1])-$s*$delta[$i-1])/$p;
|
---|
51 | }
|
---|
52 |
|
---|
53 | // Backward substitution
|
---|
54 | for( $j=$n-2; $j >= 0; --$j ) {
|
---|
55 | $this->y2[$j] = $this->y2[$j]*$this->y2[$j+1] + $delta[$j];
|
---|
56 | }
|
---|
57 | }
|
---|
58 |
|
---|
59 | // Return the two new data vectors
|
---|
60 | function Get($num=50) {
|
---|
61 | $n = $this->n ;
|
---|
62 | $step = ($this->xdata[$n-1]-$this->xdata[0]) / ($num-1);
|
---|
63 | $xnew=array();
|
---|
64 | $ynew=array();
|
---|
65 | $xnew[0] = $this->xdata[0];
|
---|
66 | $ynew[0] = $this->ydata[0];
|
---|
67 | for( $j=1; $j < $num; ++$j ) {
|
---|
68 | $xnew[$j] = $xnew[0]+$j*$step;
|
---|
69 | $ynew[$j] = $this->Interpolate($xnew[$j]);
|
---|
70 | }
|
---|
71 | return array($xnew,$ynew);
|
---|
72 | }
|
---|
73 |
|
---|
74 | // Return a single interpolated Y-value from an x value
|
---|
75 | function Interpolate($xpoint) {
|
---|
76 |
|
---|
77 | $max = $this->n-1;
|
---|
78 | $min = 0;
|
---|
79 |
|
---|
80 | // Binary search to find interval
|
---|
81 | while( $max-$min > 1 ) {
|
---|
82 | $k = ($max+$min) / 2;
|
---|
83 | if( $this->xdata[$k] > $xpoint )
|
---|
84 | $max=$k;
|
---|
85 | else
|
---|
86 | $min=$k;
|
---|
87 | }
|
---|
88 |
|
---|
89 | // Each interval is interpolated by a 3:degree polynom function
|
---|
90 | $h = $this->xdata[$max]-$this->xdata[$min];
|
---|
91 |
|
---|
92 | if( $h == 0 ) {
|
---|
93 | JpGraphError::Raise('Invalid input data for spline. Two or more consecutive input X-values are equal. Each input X-value must differ since from a mathematical point of view it must be a one-to-one mapping, i.e. each X-value must correspond to exactly one Y-value.');
|
---|
94 | }
|
---|
95 |
|
---|
96 |
|
---|
97 | $a = ($this->xdata[$max]-$xpoint)/$h;
|
---|
98 | $b = ($xpoint-$this->xdata[$min])/$h;
|
---|
99 | return $a*$this->ydata[$min]+$b*$this->ydata[$max]+
|
---|
100 | (($a*$a*$a-$a)*$this->y2[$min]+($b*$b*$b-$b)*$this->y2[$max])*($h*$h)/6.0;
|
---|
101 | }
|
---|
102 | }
|
---|
103 |
|
---|
104 | // EOF
|
---|
105 | ?>
|
---|