source: trunk/client/modules/Elezioni/grafici/jpgraph_pie3d.php@ 430

Last change on this file since 430 was 284, checked in by roby, 6 years ago
File size: 31.2 KB
RevLine 
[2]1<?php
2/*=======================================================================
[284]3 // File: JPGRAPH_PIE3D.PHP
4 // Description: 3D Pie plot extension for JpGraph
5 // Created: 2001-03-24
6 // Ver: $Id: jpgraph_pie3d.php 1329 2009-06-20 19:23:30Z ljp $
7 //
8 // Copyright (c) Asial Corporation. All rights reserved.
9 //========================================================================
10 */
[2]11
12//===================================================
13// CLASS PiePlot3D
[284]14// Description: Plots a 3D pie with a specified projection
[2]15// angle between 20 and 70 degrees.
16//===================================================
17class PiePlot3D extends PiePlot {
18 private $labelhintcolor="red",$showlabelhint=true;
[284]19 private $angle=50;
[2]20 private $edgecolor="", $edgeweight=1;
21 private $iThickness=false;
[284]22
23 //---------------
24 // CONSTRUCTOR
25 function __construct($data) {
26 $this->radius = 0.5;
27 $this->data = $data;
28 $this->title = new Text("");
29 $this->title->SetFont(FF_FONT1,FS_BOLD);
30 $this->value = new DisplayValue();
31 $this->value->Show();
32 $this->value->SetFormat('%.0f%%');
[2]33 }
34
[284]35 //---------------
36 // PUBLIC METHODS
37
[2]38 // Set label arrays
39 function SetLegends($aLegend) {
[284]40 $this->legends = array_reverse(array_slice($aLegend,0,count($this->data)));
[2]41 }
42
43 function SetSliceColors($aColors) {
[284]44 $this->setslicecolors = $aColors;
[2]45 }
46
47 function Legend($aGraph) {
[284]48 parent::Legend($aGraph);
49 $aGraph->legend->txtcol = array_reverse($aGraph->legend->txtcol);
[2]50 }
51
52 function SetCSIMTargets($aTargets,$aAlts='',$aWinTargets='') {
[284]53 $this->csimtargets = $aTargets;
54 $this->csimwintargets = $aWinTargets;
55 $this->csimalts = $aAlts;
[2]56 }
57
58 // Should the slices be separated by a line? If color is specified as "" no line
59 // will be used to separate pie slices.
60 function SetEdge($aColor='black',$aWeight=1) {
[284]61 $this->edgecolor = $aColor;
62 $this->edgeweight = $aWeight;
[2]63 }
64
65 // Specify projection angle for 3D in degrees
66 // Must be between 20 and 70 degrees
67 function SetAngle($a) {
[284]68 if( $a<5 || $a>90 ) {
69 JpGraphError::RaiseL(14002);
70 //("PiePlot3D::SetAngle() 3D Pie projection angle must be between 5 and 85 degrees.");
71 }
72 else {
73 $this->angle = $a;
74 }
[2]75 }
76
77 function Add3DSliceToCSIM($i,$xc,$yc,$height,$width,$thick,$sa,$ea) { //Slice number, ellipse centre (x,y), height, width, start angle, end angle
78
[284]79 $sa *= M_PI/180;
80 $ea *= M_PI/180;
[2]81
[284]82 //add coordinates of the centre to the map
83 $coords = "$xc, $yc";
[2]84
[284]85 //add coordinates of the first point on the arc to the map
86 $xp = floor($width*cos($sa)/2+$xc);
87 $yp = floor($yc-$height*sin($sa)/2);
88 $coords.= ", $xp, $yp";
[2]89
[284]90 //If on the front half, add the thickness offset
91 if ($sa >= M_PI && $sa <= 2*M_PI*1.01) {
92 $yp = floor($yp+$thick);
93 $coords.= ", $xp, $yp";
94 }
[2]95
[284]96 //add coordinates every 0.2 radians
97 $a=$sa+0.2;
98 while ($a<$ea) {
99 $xp = floor($width*cos($a)/2+$xc);
100 if ($a >= M_PI && $a <= 2*M_PI*1.01) {
101 $yp = floor($yc-($height*sin($a)/2)+$thick);
102 } else {
103 $yp = floor($yc-$height*sin($a)/2);
104 }
105 $coords.= ", $xp, $yp";
106 $a += 0.2;
107 }
[2]108
[284]109 //Add the last point on the arc
110 $xp = floor($width*cos($ea)/2+$xc);
111 $yp = floor($yc-$height*sin($ea)/2);
[2]112
113
[284]114 if ($ea >= M_PI && $ea <= 2*M_PI*1.01) {
115 $coords.= ", $xp, ".floor($yp+$thick);
116 }
117 $coords.= ", $xp, $yp";
118 $alt='';
119
120 if( !empty($this->csimtargets[$i]) ) {
121 $this->csimareas .= "<area shape=\"poly\" coords=\"$coords\" href=\"".$this->csimtargets[$i]."\"";
122
123 if( !empty($this->csimwintargets[$i]) ) {
124 $this->csimareas .= " target=\"".$this->csimwintargets[$i]."\" ";
125 }
126
127 if( !empty($this->csimalts[$i]) ) {
128 $tmp=sprintf($this->csimalts[$i],$this->data[$i]);
129 $this->csimareas .= "alt=\"$tmp\" title=\"$tmp\" ";
130 }
131 $this->csimareas .= " />\n";
132 }
133
[2]134 }
135
136 function SetLabels($aLabels,$aLblPosAdj="auto") {
[284]137 $this->labels = $aLabels;
138 $this->ilabelposadj=$aLblPosAdj;
[2]139 }
140
[284]141
[2]142 // Distance from the pie to the labels
143 function SetLabelMargin($m) {
[284]144 $this->value->SetMargin($m);
[2]145 }
[284]146
[2]147 // Show a thin line from the pie to the label for a specific slice
148 function ShowLabelHint($f=true) {
[284]149 $this->showlabelhint=$f;
[2]150 }
[284]151
[2]152 // Set color of hint line to label for each slice
153 function SetLabelHintColor($c) {
[284]154 $this->labelhintcolor=$c;
[2]155 }
156
157 function SetHeight($aHeight) {
[284]158 $this->iThickness = $aHeight;
[2]159 }
160
161
[284]162 // Normalize Angle between 0-360
[2]163 function NormAngle($a) {
[284]164 // Normalize anle to 0 to 2M_PI
165 //
166 if( $a > 0 ) {
167 while($a > 360) $a -= 360;
168 }
169 else {
170 while($a < 0) $a += 360;
171 }
172 if( $a < 0 )
173 $a = 360 + $a;
[2]174
[284]175 if( $a == 360 ) $a=0;
176 return $a;
[2]177 }
178
179
[284]180
181 // Draw one 3D pie slice at position ($xc,$yc) with height $z
[2]182 function Pie3DSlice($img,$xc,$yc,$w,$h,$sa,$ea,$z,$fillcolor,$shadow=0.65) {
183
[284]184 // Due to the way the 3D Pie algorithm works we are
185 // guaranteed that any slice we get into this method
186 // belongs to either the left or right side of the
187 // pie ellipse. Hence, no slice will cross 90 or 270
188 // point.
189 if( ($sa < 90 && $ea > 90) || ( ($sa > 90 && $sa < 270) && $ea > 270) ) {
190 JpGraphError::RaiseL(14003);//('Internal assertion failed. Pie3D::Pie3DSlice');
191 exit(1);
192 }
[2]193
[284]194 $p[] = array();
[2]195
[284]196 // Setup pre-calculated values
197 $rsa = $sa/180*M_PI; // to Rad
198 $rea = $ea/180*M_PI; // to Rad
199 $sinsa = sin($rsa);
200 $cossa = cos($rsa);
201 $sinea = sin($rea);
202 $cosea = cos($rea);
[2]203
[284]204 // p[] is the points for the overall slice and
205 // pt[] is the points for the top pie
[2]206
[284]207 // Angular step when approximating the arc with a polygon train.
208 $step = 0.05;
[2]209
[284]210 if( $sa >= 270 ) {
211 if( $ea > 360 || ($ea > 0 && $ea <= 90) ) {
212 if( $ea > 0 && $ea <= 90 ) {
213 // Adjust angle to simplify conditions in loops
214 $rea += 2*M_PI;
215 }
[2]216
[284]217 $p = array($xc,$yc,$xc,$yc+$z,
218 $xc+$w*$cossa,$z+$yc-$h*$sinsa);
219 $pt = array($xc,$yc,$xc+$w*$cossa,$yc-$h*$sinsa);
[2]220
[284]221 for( $a=$rsa; $a < 2*M_PI; $a += $step ) {
222 $tca = cos($a);
223 $tsa = sin($a);
224 $p[] = $xc+$w*$tca;
225 $p[] = $z+$yc-$h*$tsa;
226 $pt[] = $xc+$w*$tca;
227 $pt[] = $yc-$h*$tsa;
228 }
[2]229
[284]230 $pt[] = $xc+$w;
231 $pt[] = $yc;
[2]232
[284]233 $p[] = $xc+$w;
234 $p[] = $z+$yc;
235 $p[] = $xc+$w;
236 $p[] = $yc;
237 $p[] = $xc;
238 $p[] = $yc;
[2]239
[284]240 for( $a=2*M_PI+$step; $a < $rea; $a += $step ) {
241 $pt[] = $xc + $w*cos($a);
242 $pt[] = $yc - $h*sin($a);
243 }
[2]244
[284]245 $pt[] = $xc+$w*$cosea;
246 $pt[] = $yc-$h*$sinea;
247 $pt[] = $xc;
248 $pt[] = $yc;
[2]249
[284]250 }
251 else {
252 $p = array($xc,$yc,$xc,$yc+$z,
253 $xc+$w*$cossa,$z+$yc-$h*$sinsa);
254 $pt = array($xc,$yc,$xc+$w*$cossa,$yc-$h*$sinsa);
[2]255
[284]256 $rea = $rea == 0.0 ? 2*M_PI : $rea;
257 for( $a=$rsa; $a < $rea; $a += $step ) {
258 $tca = cos($a);
259 $tsa = sin($a);
260 $p[] = $xc+$w*$tca;
261 $p[] = $z+$yc-$h*$tsa;
262 $pt[] = $xc+$w*$tca;
263 $pt[] = $yc-$h*$tsa;
264 }
[2]265
[284]266 $pt[] = $xc+$w*$cosea;
267 $pt[] = $yc-$h*$sinea;
268 $pt[] = $xc;
269 $pt[] = $yc;
[2]270
[284]271 $p[] = $xc+$w*$cosea;
272 $p[] = $z+$yc-$h*$sinea;
273 $p[] = $xc+$w*$cosea;
274 $p[] = $yc-$h*$sinea;
275 $p[] = $xc;
276 $p[] = $yc;
277 }
278 }
279 elseif( $sa >= 180 ) {
280 $p = array($xc,$yc,$xc,$yc+$z,$xc+$w*$cosea,$z+$yc-$h*$sinea);
281 $pt = array($xc,$yc,$xc+$w*$cosea,$yc-$h*$sinea);
[2]282
[284]283 for( $a=$rea; $a>$rsa; $a -= $step ) {
284 $tca = cos($a);
285 $tsa = sin($a);
286 $p[] = $xc+$w*$tca;
287 $p[] = $z+$yc-$h*$tsa;
288 $pt[] = $xc+$w*$tca;
289 $pt[] = $yc-$h*$tsa;
290 }
[2]291
[284]292 $pt[] = $xc+$w*$cossa;
293 $pt[] = $yc-$h*$sinsa;
294 $pt[] = $xc;
295 $pt[] = $yc;
[2]296
[284]297 $p[] = $xc+$w*$cossa;
298 $p[] = $z+$yc-$h*$sinsa;
299 $p[] = $xc+$w*$cossa;
300 $p[] = $yc-$h*$sinsa;
301 $p[] = $xc;
302 $p[] = $yc;
[2]303
[284]304 }
305 elseif( $sa >= 90 ) {
306 if( $ea > 180 ) {
307 $p = array($xc,$yc,$xc,$yc+$z,$xc+$w*$cosea,$z+$yc-$h*$sinea);
308 $pt = array($xc,$yc,$xc+$w*$cosea,$yc-$h*$sinea);
[2]309
[284]310 for( $a=$rea; $a > M_PI; $a -= $step ) {
311 $tca = cos($a);
312 $tsa = sin($a);
313 $p[] = $xc+$w*$tca;
314 $p[] = $z + $yc - $h*$tsa;
315 $pt[] = $xc+$w*$tca;
316 $pt[] = $yc-$h*$tsa;
317 }
[2]318
[284]319 $p[] = $xc-$w;
320 $p[] = $z+$yc;
321 $p[] = $xc-$w;
322 $p[] = $yc;
323 $p[] = $xc;
324 $p[] = $yc;
[2]325
[284]326 $pt[] = $xc-$w;
327 $pt[] = $z+$yc;
328 $pt[] = $xc-$w;
329 $pt[] = $yc;
[2]330
[284]331 for( $a=M_PI-$step; $a > $rsa; $a -= $step ) {
332 $pt[] = $xc + $w*cos($a);
333 $pt[] = $yc - $h*sin($a);
334 }
[2]335
[284]336 $pt[] = $xc+$w*$cossa;
337 $pt[] = $yc-$h*$sinsa;
338 $pt[] = $xc;
339 $pt[] = $yc;
[2]340
[284]341 }
342 else { // $sa >= 90 && $ea <= 180
343 $p = array($xc,$yc,$xc,$yc+$z,
344 $xc+$w*$cosea,$z+$yc-$h*$sinea,
345 $xc+$w*$cosea,$yc-$h*$sinea,
346 $xc,$yc);
[2]347
[284]348 $pt = array($xc,$yc,$xc+$w*$cosea,$yc-$h*$sinea);
[2]349
[284]350 for( $a=$rea; $a>$rsa; $a -= $step ) {
351 $pt[] = $xc + $w*cos($a);
352 $pt[] = $yc - $h*sin($a);
353 }
354
355 $pt[] = $xc+$w*$cossa;
356 $pt[] = $yc-$h*$sinsa;
357 $pt[] = $xc;
358 $pt[] = $yc;
359
360 }
361 }
362 else { // sa > 0 && ea < 90
363
364 $p = array($xc,$yc,$xc,$yc+$z,
365 $xc+$w*$cossa,$z+$yc-$h*$sinsa,
366 $xc+$w*$cossa,$yc-$h*$sinsa,
367 $xc,$yc);
368
369 $pt = array($xc,$yc,$xc+$w*$cossa,$yc-$h*$sinsa);
370
371 for( $a=$rsa; $a < $rea; $a += $step ) {
372 $pt[] = $xc + $w*cos($a);
373 $pt[] = $yc - $h*sin($a);
374 }
375
376 $pt[] = $xc+$w*$cosea;
377 $pt[] = $yc-$h*$sinea;
378 $pt[] = $xc;
379 $pt[] = $yc;
380 }
381
382 $img->PushColor($fillcolor.":".$shadow);
383 $img->FilledPolygon($p);
384 $img->PopColor();
385
386 $img->PushColor($fillcolor);
387 $img->FilledPolygon($pt);
388 $img->PopColor();
[2]389 }
390
391 function SetStartAngle($aStart) {
[284]392 if( $aStart < 0 || $aStart > 360 ) {
393 JpGraphError::RaiseL(14004);//('Slice start angle must be between 0 and 360 degrees.');
394 }
395 $this->startangle = $aStart;
[2]396 }
[284]397
398 // Draw a 3D Pie
[2]399 function Pie3D($aaoption,$img,$data,$colors,$xc,$yc,$d,$angle,$z,
[284]400 $shadow=0.65,$startangle=0,$edgecolor="",$edgeweight=1) {
[2]401
[284]402 //---------------------------------------------------------------------------
403 // As usual the algorithm get more complicated than I originally
404 // envisioned. I believe that this is as simple as it is possible
405 // to do it with the features I want. It's a good exercise to start
406 // thinking on how to do this to convince your self that all this
407 // is really needed for the general case.
408 //
409 // The algorithm two draw 3D pies without "real 3D" is done in
410 // two steps.
411 // First imagine the pie cut in half through a thought line between
412 // 12'a clock and 6'a clock. It now easy to imagine that we can plot
413 // the individual slices for each half by starting with the topmost
414 // pie slice and continue down to 6'a clock.
415 //
416 // In the algortithm this is done in three principal steps
417 // Step 1. Do the knife cut to ensure by splitting slices that extends
418 // over the cut line. This is done by splitting the original slices into
419 // upto 3 subslices.
420 // Step 2. Find the top slice for each half
421 // Step 3. Draw the slices from top to bottom
422 //
423 // The thing that slightly complicates this scheme with all the
424 // angle comparisons below is that we can have an arbitrary start
425 // angle so we must take into account the different equivalence classes.
426 // For the same reason we must walk through the angle array in a
427 // modulo fashion.
428 //
429 // Limitations of algorithm:
430 // * A small exploded slice which crosses the 270 degree point
431 // will get slightly nagged close to the center due to the fact that
432 // we print the slices in Z-order and that the slice left part
433 // get printed first and might get slightly nagged by a larger
434 // slice on the right side just before the right part of the small
435 // slice. Not a major problem though.
436 //---------------------------------------------------------------------------
[2]437
438
[284]439 // Determine the height of the ellippse which gives an
440 // indication of the inclination angle
441 $h = ($angle/90.0)*$d;
442 $sum = 0;
443 for($i=0; $i<count($data); ++$i ) {
444 $sum += $data[$i];
445 }
[2]446
[284]447 // Special optimization
448 if( $sum==0 ) return;
[2]449
[284]450 if( $this->labeltype == 2 ) {
451 $this->adjusted_data = $this->AdjPercentage($data);
452 }
[2]453
[284]454 // Setup the start
455 $accsum = 0;
456 $a = $startangle;
457 $a = $this->NormAngle($a);
[2]458
[284]459 //
460 // Step 1 . Split all slices that crosses 90 or 270
461 //
462 $idx=0;
463 $adjexplode=array();
464 $numcolors = count($colors);
465 for($i=0; $i<count($data); ++$i, ++$idx ) {
466 $da = $data[$i]/$sum * 360;
[2]467
[284]468 if( empty($this->explode_radius[$i]) ) {
469 $this->explode_radius[$i]=0;
470 }
[2]471
[284]472 $expscale=1;
473 if( $aaoption == 1 ) {
474 $expscale=2;
475 }
[2]476
[284]477 $la = $a + $da/2;
478 $explode = array( $xc + $this->explode_radius[$i]*cos($la*M_PI/180)*$expscale,
479 $yc - $this->explode_radius[$i]*sin($la*M_PI/180) * ($h/$d) *$expscale );
480 $adjexplode[$idx] = $explode;
481 $labeldata[$i] = array($la,$explode[0],$explode[1]);
482 $originalangles[$i] = array($a,$a+$da);
[2]483
[284]484 $ne = $this->NormAngle($a+$da);
485 if( $da <= 180 ) {
486 // If the slice size is <= 90 it can at maximum cut across
487 // one boundary (either 90 or 270) where it needs to be split
488 $split=-1; // no split
489 if( ($da<=90 && ($a <= 90 && $ne > 90)) ||
490 (($da <= 180 && $da >90) && (($a < 90 || $a >= 270) && $ne > 90)) ) {
491 $split = 90;
492 }
493 elseif( ($da<=90 && ($a <= 270 && $ne > 270)) ||
494 (($da<=180 && $da>90) && ($a >= 90 && $a < 270 && ($a+$da) > 270 )) ) {
495 $split = 270;
496 }
497 if( $split > 0 ) { // split in two
498 $angles[$idx] = array($a,$split);
499 $adjcolors[$idx] = $colors[$i % $numcolors];
500 $adjexplode[$idx] = $explode;
501 $angles[++$idx] = array($split,$ne);
502 $adjcolors[$idx] = $colors[$i % $numcolors];
503 $adjexplode[$idx] = $explode;
504 }
505 else { // no split
506 $angles[$idx] = array($a,$ne);
507 $adjcolors[$idx] = $colors[$i % $numcolors];
508 $adjexplode[$idx] = $explode;
509 }
510 }
511 else {
512 // da>180
513 // Slice may, depending on position, cross one or two
514 // bonudaries
[2]515
[284]516 if( $a < 90 ) $split = 90;
517 elseif( $a <= 270 ) $split = 270;
518 else $split = 90;
[2]519
[284]520 $angles[$idx] = array($a,$split);
521 $adjcolors[$idx] = $colors[$i % $numcolors];
522 $adjexplode[$idx] = $explode;
523 //if( $a+$da > 360-$split ) {
524 // For slices larger than 270 degrees we might cross
525 // another boundary as well. This means that we must
526 // split the slice further. The comparison gets a little
527 // bit complicated since we must take into accound that
528 // a pie might have a startangle >0 and hence a slice might
529 // wrap around the 0 angle.
530 // Three cases:
531 // a) Slice starts before 90 and hence gets a split=90, but
532 // we must also check if we need to split at 270
533 // b) Slice starts after 90 but before 270 and slices
534 // crosses 90 (after a wrap around of 0)
535 // c) If start is > 270 (hence the firstr split is at 90)
536 // and the slice is so large that it goes all the way
537 // around 270.
538 if( ($a < 90 && ($a+$da > 270)) || ($a > 90 && $a<=270 && ($a+$da>360+90) ) || ($a > 270 && $this->NormAngle($a+$da)>270) ) {
539 $angles[++$idx] = array($split,360-$split);
540 $adjcolors[$idx] = $colors[$i % $numcolors];
541 $adjexplode[$idx] = $explode;
542 $angles[++$idx] = array(360-$split,$ne);
543 $adjcolors[$idx] = $colors[$i % $numcolors];
544 $adjexplode[$idx] = $explode;
545 }
546 else {
547 // Just a simple split to the previous decided
548 // angle.
549 $angles[++$idx] = array($split,$ne);
550 $adjcolors[$idx] = $colors[$i % $numcolors];
551 $adjexplode[$idx] = $explode;
552 }
553 }
554 $a += $da;
555 $a = $this->NormAngle($a);
556 }
[2]557
[284]558 // Total number of slices
559 $n = count($angles);
[2]560
[284]561 for($i=0; $i<$n; ++$i) {
562 list($dbgs,$dbge) = $angles[$i];
563 }
[2]564
[284]565 //
566 // Step 2. Find start index (first pie that starts in upper left quadrant)
567 //
568 $minval = $angles[0][0];
569 $min = 0;
570 for( $i=0; $i<$n; ++$i ) {
571 if( $angles[$i][0] < $minval ) {
572 $minval = $angles[$i][0];
573 $min = $i;
574 }
575 }
576 $j = $min;
577 $cnt = 0;
578 while( $angles[$j][1] <= 90 ) {
579 $j++;
580 if( $j>=$n) {
581 $j=0;
582 }
583 if( $cnt > $n ) {
584 JpGraphError::RaiseL(14005);
585 //("Pie3D Internal error (#1). Trying to wrap twice when looking for start index");
586 }
587 ++$cnt;
588 }
589 $start = $j;
[2]590
[284]591 //
592 // Step 3. Print slices in z-order
593 //
594 $cnt = 0;
[2]595
[284]596 // First stroke all the slices between 90 and 270 (left half circle)
597 // counterclockwise
598
599 while( $angles[$j][0] < 270 && $aaoption !== 2 ) {
[2]600
[284]601 list($x,$y) = $adjexplode[$j];
[2]602
[284]603 $this->Pie3DSlice($img,$x,$y,$d,$h,$angles[$j][0],$angles[$j][1],
604 $z,$adjcolors[$j],$shadow);
[2]605
[284]606 $last = array($x,$y,$j);
[2]607
[284]608 $j++;
609 if( $j >= $n ) $j=0;
610 if( $cnt > $n ) {
611 JpGraphError::RaiseL(14006);
612 //("Pie3D Internal Error: Z-Sorting algorithm for 3D Pies is not working properly (2). Trying to wrap twice while stroking.");
613 }
614 ++$cnt;
615 }
616
617 $slice_left = $n-$cnt;
618 $j=$start-1;
619 if($j<0) $j=$n-1;
620 $cnt = 0;
[2]621
[284]622 // The stroke all slices from 90 to -90 (right half circle)
623 // clockwise
624 while( $cnt < $slice_left && $aaoption !== 2 ) {
[2]625
[284]626 list($x,$y) = $adjexplode[$j];
[2]627
[284]628 $this->Pie3DSlice($img,$x,$y,$d,$h,$angles[$j][0],$angles[$j][1],
629 $z,$adjcolors[$j],$shadow);
630 $j--;
631 if( $cnt > $n ) {
632 JpGraphError::RaiseL(14006);
633 //("Pie3D Internal Error: Z-Sorting algorithm for 3D Pies is not working properly (2). Trying to wrap twice while stroking.");
634 }
635 if($j<0) $j=$n-1;
636 $cnt++;
637 }
[2]638
[284]639 // Now do a special thing. Stroke the last slice on the left
640 // halfcircle one more time. This is needed in the case where
641 // the slice close to 270 have been exploded. In that case the
642 // part of the slice close to the center of the pie might be
643 // slightly nagged.
644 if( $aaoption !== 2 )
645 $this->Pie3DSlice($img,$last[0],$last[1],$d,$h,$angles[$last[2]][0],
646 $angles[$last[2]][1],$z,$adjcolors[$last[2]],$shadow);
[2]647
648
[284]649 if( $aaoption !== 1 ) {
650 // Now print possible labels and add csim
651 $this->value->ApplyFont($img);
652 $margin = $img->GetFontHeight()/2 + $this->value->margin ;
653 for($i=0; $i < count($data); ++$i ) {
654 $la = $labeldata[$i][0];
655 $x = $labeldata[$i][1] + cos($la*M_PI/180)*($d+$margin)*$this->ilabelposadj;
656 $y = $labeldata[$i][2] - sin($la*M_PI/180)*($h+$margin)*$this->ilabelposadj;
657 if( $this->ilabelposadj >= 1.0 ) {
658 if( $la > 180 && $la < 360 ) $y += $z;
659 }
660 if( $this->labeltype == 0 ) {
661 if( $sum > 0 ) $l = 100*$data[$i]/$sum;
662 else $l = 0;
663 }
664 elseif( $this->labeltype == 1 ) {
665 $l = $data[$i];
666 }
667 else {
668 $l = $this->adjusted_data[$i];
669 }
670 if( isset($this->labels[$i]) && is_string($this->labels[$i]) ) {
671 $l=sprintf($this->labels[$i],$l);
672 }
[2]673
[284]674 $this->StrokeLabels($l,$img,$labeldata[$i][0]*M_PI/180,$x,$y,$z);
675
676 $this->Add3DSliceToCSIM($i,$labeldata[$i][1],$labeldata[$i][2],$h*2,$d*2,$z,
677 $originalangles[$i][0],$originalangles[$i][1]);
678 }
679 }
[2]680
[284]681 //
682 // Finally add potential lines in pie
683 //
684
685 if( $edgecolor=="" || $aaoption !== 0 ) return;
686
687 $accsum = 0;
688 $a = $startangle;
689 $a = $this->NormAngle($a);
690
691 $a *= M_PI/180.0;
692
693 $idx=0;
694 $img->PushColor($edgecolor);
695 $img->SetLineWeight($edgeweight);
696
697 $fulledge = true;
698 for($i=0; $i < count($data) && $fulledge; ++$i ) {
699 if( empty($this->explode_radius[$i]) ) {
700 $this->explode_radius[$i]=0;
701 }
702 if( $this->explode_radius[$i] > 0 ) {
703 $fulledge = false;
704 }
705 }
706
707
708 for($i=0; $i < count($data); ++$i, ++$idx ) {
709
710 $da = $data[$i]/$sum * 2*M_PI;
711 $this->StrokeFullSliceFrame($img,$xc,$yc,$a,$a+$da,$d,$h,$z,$edgecolor,
712 $this->explode_radius[$i],$fulledge);
713 $a += $da;
714 }
715 $img->PopColor();
[2]716 }
717
718 function StrokeFullSliceFrame($img,$xc,$yc,$sa,$ea,$w,$h,$z,$edgecolor,$exploderadius,$fulledge) {
[284]719 $step = 0.02;
[2]720
[284]721 if( $exploderadius > 0 ) {
722 $la = ($sa+$ea)/2;
723 $xc += $exploderadius*cos($la);
724 $yc -= $exploderadius*sin($la) * ($h/$w) ;
725
726 }
[2]727
[284]728 $p = array($xc,$yc,$xc+$w*cos($sa),$yc-$h*sin($sa));
[2]729
[284]730 for($a=$sa; $a < $ea; $a += $step ) {
731 $p[] = $xc + $w*cos($a);
732 $p[] = $yc - $h*sin($a);
733 }
[2]734
[284]735 $p[] = $xc+$w*cos($ea);
736 $p[] = $yc-$h*sin($ea);
737 $p[] = $xc;
738 $p[] = $yc;
[2]739
[284]740 $img->SetColor($edgecolor);
741 $img->Polygon($p);
[2]742
[284]743 // Unfortunately we can't really draw the full edge around the whole of
744 // of the slice if any of the slices are exploded. The reason is that
745 // this algorithm is to simply. There are cases where the edges will
746 // "overwrite" other slices when they have been exploded.
747 // Doing the full, proper 3D hidden lines stiff is actually quite
748 // tricky. So for exploded pies we only draw the top edge. Not perfect
749 // but the "real" solution is much more complicated.
750 if( $fulledge && !( $sa > 0 && $sa < M_PI && $ea < M_PI) ) {
[2]751
[284]752 if($sa < M_PI && $ea > M_PI) {
753 $sa = M_PI;
754 }
[2]755
[284]756 if($sa < 2*M_PI && (($ea >= 2*M_PI) || ($ea > 0 && $ea < $sa ) ) ) {
757 $ea = 2*M_PI;
758 }
759
760 if( $sa >= M_PI && $ea <= 2*M_PI ) {
761 $p = array($xc + $w*cos($sa),$yc - $h*sin($sa),
762 $xc + $w*cos($sa),$z + $yc - $h*sin($sa));
763
764 for($a=$sa+$step; $a < $ea; $a += $step ) {
765 $p[] = $xc + $w*cos($a);
766 $p[] = $z + $yc - $h*sin($a);
767 }
768 $p[] = $xc + $w*cos($ea);
769 $p[] = $z + $yc - $h*sin($ea);
770 $p[] = $xc + $w*cos($ea);
771 $p[] = $yc - $h*sin($ea);
772 $img->SetColor($edgecolor);
773 $img->Polygon($p);
774 }
775 }
[2]776 }
777
778 function Stroke($img,$aaoption=0) {
[284]779 $n = count($this->data);
[2]780
[284]781 // If user hasn't set the colors use the theme array
782 if( $this->setslicecolors==null ) {
783 $colors = array_keys($img->rgb->rgb_table);
784 sort($colors);
785 $idx_a=$this->themearr[$this->theme];
786 $ca = array();
787 $m = count($idx_a);
788 for($i=0; $i < $m; ++$i) {
789 $ca[$i] = $colors[$idx_a[$i]];
790 }
791 $ca = array_reverse(array_slice($ca,0,$n));
792 }
793 else {
794 $ca = $this->setslicecolors;
795 }
[2]796
797
[284]798 if( $this->posx <= 1 && $this->posx > 0 ) {
799 $xc = round($this->posx*$img->width);
800 }
801 else {
802 $xc = $this->posx ;
803 }
[2]804
[284]805 if( $this->posy <= 1 && $this->posy > 0 ) {
806 $yc = round($this->posy*$img->height);
807 }
808 else {
809 $yc = $this->posy ;
810 }
[2]811
[284]812 if( $this->radius <= 1 ) {
813 $width = floor($this->radius*min($img->width,$img->height));
814 // Make sure that the pie doesn't overflow the image border
815 // The 0.9 factor is simply an extra margin to leave some space
816 // between the pie an the border of the image.
817 $width = min($width,min($xc*0.9,($yc*90/$this->angle-$width/4)*0.9));
818 }
819 else {
820 $width = $this->radius * ($aaoption === 1 ? 2 : 1 ) ;
821 }
[2]822
[284]823 // Add a sanity check for width
824 if( $width < 1 ) {
825 JpGraphError::RaiseL(14007);//("Width for 3D Pie is 0. Specify a size > 0");
826 }
[2]827
[284]828 // Establish a thickness. By default the thickness is a fifth of the
829 // pie slice width (=pie radius) but since the perspective depends
830 // on the inclination angle we use some heuristics to make the edge
831 // slightly thicker the less the angle.
[2]832
[284]833 // Has user specified an absolute thickness? In that case use
834 // that instead
[2]835
[284]836 if( $this->iThickness ) {
837 $thick = $this->iThickness;
838 $thick *= ($aaoption === 1 ? 2 : 1 );
839 }
840 else {
841 $thick = $width/12;
842 }
843 $a = $this->angle;
844
845 if( $a <= 30 ) $thick *= 1.6;
846 elseif( $a <= 40 ) $thick *= 1.4;
847 elseif( $a <= 50 ) $thick *= 1.2;
848 elseif( $a <= 60 ) $thick *= 1.0;
849 elseif( $a <= 70 ) $thick *= 0.8;
850 elseif( $a <= 80 ) $thick *= 0.7;
851 else $thick *= 0.6;
852
853 $thick = floor($thick);
854
855 if( $this->explode_all ) {
856 for($i=0; $i < $n; ++$i)
857 $this->explode_radius[$i]=$this->explode_r;
858 }
859
860 $this->Pie3D($aaoption,$img,$this->data, $ca, $xc, $yc, $width, $this->angle,
861 $thick, 0.65, $this->startangle, $this->edgecolor, $this->edgeweight);
862
863 // Adjust title position
864 if( $aaoption != 1 ) {
865 $this->title->SetPos($xc,$yc-$this->title->GetFontHeight($img)-$width/2-$this->title->margin, "center","bottom");
866 $this->title->Stroke($img);
867 }
[2]868 }
869
[284]870 //---------------
871 // PRIVATE METHODS
[2]872
873 // Position the labels of each slice
874 function StrokeLabels($label,$img,$a,$xp,$yp,$z) {
[284]875 $this->value->halign="left";
876 $this->value->valign="top";
[2]877
[284]878 // Position the axis title.
879 // dx, dy is the offset from the top left corner of the bounding box that sorrounds the text
880 // that intersects with the extension of the corresponding axis. The code looks a little
881 // bit messy but this is really the only way of having a reasonable position of the
882 // axis titles.
883 $this->value->ApplyFont($img);
884 $h=$img->GetTextHeight($label);
885 // For numeric values the format of the display value
886 // must be taken into account
887 if( is_numeric($label) ) {
888 if( $label >= 0 ) {
889 $w=$img->GetTextWidth(sprintf($this->value->format,$label));
890 }
891 else {
892 $w=$img->GetTextWidth(sprintf($this->value->negformat,$label));
893 }
894 }
895 else {
896 $w=$img->GetTextWidth($label);
897 }
898
899 while( $a > 2*M_PI ) {
900 $a -= 2*M_PI;
901 }
902
903 if( $a>=7*M_PI/4 || $a <= M_PI/4 ) $dx=0;
904 if( $a>=M_PI/4 && $a <= 3*M_PI/4 ) $dx=($a-M_PI/4)*2/M_PI;
905 if( $a>=3*M_PI/4 && $a <= 5*M_PI/4 ) $dx=1;
906 if( $a>=5*M_PI/4 && $a <= 7*M_PI/4 ) $dx=(1-($a-M_PI*5/4)*2/M_PI);
[2]907
[284]908 if( $a>=7*M_PI/4 ) $dy=(($a-M_PI)-3*M_PI/4)*2/M_PI;
909 if( $a<=M_PI/4 ) $dy=(1-$a*2/M_PI);
910 if( $a>=M_PI/4 && $a <= 3*M_PI/4 ) $dy=1;
911 if( $a>=3*M_PI/4 && $a <= 5*M_PI/4 ) $dy=(1-($a-3*M_PI/4)*2/M_PI);
912 if( $a>=5*M_PI/4 && $a <= 7*M_PI/4 ) $dy=0;
[2]913
[284]914 $x = round($xp-$dx*$w);
915 $y = round($yp-$dy*$h);
916
917 // Mark anchor point for debugging
918 /*
919 $img->SetColor('red');
920 $img->Line($xp-10,$yp,$xp+10,$yp);
921 $img->Line($xp,$yp-10,$xp,$yp+10);
922 */
923
924 $oldmargin = $this->value->margin;
925 $this->value->margin=0;
926 $this->value->Stroke($img,$label,$x,$y);
927 $this->value->margin=$oldmargin;
928
929 }
[2]930} // Class
931
932/* EOF */
933?>
Note: See TracBrowser for help on using the repository browser.