1 | <?php
|
---|
2 | /*=======================================================================
|
---|
3 | // File: JPGRAPH_PIE3D.PHP
|
---|
4 | // Description: 3D Pie plot extension for JpGraph
|
---|
5 | // Created: 2001-03-24
|
---|
6 | // Ver: $Id: jpgraph_pie3d.php 956 2007-11-17 13:19:20Z ljp $
|
---|
7 | //
|
---|
8 | // Copyright (c) Aditus Consulting. All rights reserved.
|
---|
9 | //========================================================================
|
---|
10 | */
|
---|
11 |
|
---|
12 | //===================================================
|
---|
13 | // CLASS PiePlot3D
|
---|
14 | // Description: Plots a 3D pie with a specified projection
|
---|
15 | // angle between 20 and 70 degrees.
|
---|
16 | //===================================================
|
---|
17 | class PiePlot3D extends PiePlot {
|
---|
18 | private $labelhintcolor="red",$showlabelhint=true;
|
---|
19 | private $angle=50;
|
---|
20 | private $edgecolor="", $edgeweight=1;
|
---|
21 | private $iThickness=false;
|
---|
22 |
|
---|
23 | //---------------
|
---|
24 | // CONSTRUCTOR
|
---|
25 | function PiePlot3d($data) {
|
---|
26 | $this->radius = 0.5;
|
---|
27 | $this->data = $data;
|
---|
28 | $this->title = new Text("");
|
---|
29 | $this->title->SetFont(FF_FONT1,FS_BOLD);
|
---|
30 | $this->value = new DisplayValue();
|
---|
31 | $this->value->Show();
|
---|
32 | $this->value->SetFormat('%.0f%%');
|
---|
33 | }
|
---|
34 |
|
---|
35 | //---------------
|
---|
36 | // PUBLIC METHODS
|
---|
37 |
|
---|
38 | // Set label arrays
|
---|
39 | function SetLegends($aLegend) {
|
---|
40 | $this->legends = array_reverse(array_slice($aLegend,0,count($this->data)));
|
---|
41 | }
|
---|
42 |
|
---|
43 | function SetSliceColors($aColors) {
|
---|
44 | $this->setslicecolors = $aColors;
|
---|
45 | }
|
---|
46 |
|
---|
47 | function Legend($aGraph) {
|
---|
48 | parent::Legend($aGraph);
|
---|
49 | $aGraph->legend->txtcol = array_reverse($aGraph->legend->txtcol);
|
---|
50 | }
|
---|
51 |
|
---|
52 | function SetCSIMTargets($aTargets,$aAlts='',$aWinTargets='') {
|
---|
53 | $this->csimtargets = $aTargets;
|
---|
54 | $this->csimwintargets = $aWinTargets;
|
---|
55 | $this->csimalts = $aAlts;
|
---|
56 | }
|
---|
57 |
|
---|
58 | // Should the slices be separated by a line? If color is specified as "" no line
|
---|
59 | // will be used to separate pie slices.
|
---|
60 | function SetEdge($aColor='black',$aWeight=1) {
|
---|
61 | $this->edgecolor = $aColor;
|
---|
62 | $this->edgeweight = $aWeight;
|
---|
63 | }
|
---|
64 |
|
---|
65 | // Dummy function to make Pie3D behave in a similair way to 2D
|
---|
66 | function ShowBorder($exterior=true,$interior=true) {
|
---|
67 | JpGraphError::RaiseL(14001);
|
---|
68 | //('Pie3D::ShowBorder() . Deprecated function. Use Pie3D::SetEdge() to control the edges around slices.');
|
---|
69 | }
|
---|
70 |
|
---|
71 | // Specify projection angle for 3D in degrees
|
---|
72 | // Must be between 20 and 70 degrees
|
---|
73 | function SetAngle($a) {
|
---|
74 | if( $a<5 || $a>90 )
|
---|
75 | JpGraphError::RaiseL(14002);
|
---|
76 | //("PiePlot3D::SetAngle() 3D Pie projection angle must be between 5 and 85 degrees.");
|
---|
77 | else
|
---|
78 | $this->angle = $a;
|
---|
79 | }
|
---|
80 |
|
---|
81 | function Add3DSliceToCSIM($i,$xc,$yc,$height,$width,$thick,$sa,$ea) { //Slice number, ellipse centre (x,y), height, width, start angle, end angle
|
---|
82 |
|
---|
83 | $sa *= M_PI/180;
|
---|
84 | $ea *= M_PI/180;
|
---|
85 |
|
---|
86 | //add coordinates of the centre to the map
|
---|
87 | $coords = "$xc, $yc";
|
---|
88 |
|
---|
89 | //add coordinates of the first point on the arc to the map
|
---|
90 | $xp = floor($width*cos($sa)/2+$xc);
|
---|
91 | $yp = floor($yc-$height*sin($sa)/2);
|
---|
92 | $coords.= ", $xp, $yp";
|
---|
93 |
|
---|
94 | //If on the front half, add the thickness offset
|
---|
95 | if ($sa >= M_PI && $sa <= 2*M_PI*1.01) {
|
---|
96 | $yp = floor($yp+$thick);
|
---|
97 | $coords.= ", $xp, $yp";
|
---|
98 | }
|
---|
99 |
|
---|
100 | //add coordinates every 0.2 radians
|
---|
101 | $a=$sa+0.2;
|
---|
102 | while ($a<$ea) {
|
---|
103 | $xp = floor($width*cos($a)/2+$xc);
|
---|
104 | if ($a >= M_PI && $a <= 2*M_PI*1.01) {
|
---|
105 | $yp = floor($yc-($height*sin($a)/2)+$thick);
|
---|
106 | } else {
|
---|
107 | $yp = floor($yc-$height*sin($a)/2);
|
---|
108 | }
|
---|
109 | $coords.= ", $xp, $yp";
|
---|
110 | $a += 0.2;
|
---|
111 | }
|
---|
112 |
|
---|
113 | //Add the last point on the arc
|
---|
114 | $xp = floor($width*cos($ea)/2+$xc);
|
---|
115 | $yp = floor($yc-$height*sin($ea)/2);
|
---|
116 |
|
---|
117 |
|
---|
118 | if ($ea >= M_PI && $ea <= 2*M_PI*1.01) {
|
---|
119 | $coords.= ", $xp, ".floor($yp+$thick);
|
---|
120 | }
|
---|
121 | $coords.= ", $xp, $yp";
|
---|
122 | $alt='';
|
---|
123 |
|
---|
124 | if( !empty($this->csimtargets[$i]) ) {
|
---|
125 | $this->csimareas .= "<area shape=\"poly\" coords=\"$coords\" href=\"".$this->csimtargets[$i]."\"";
|
---|
126 |
|
---|
127 | if( !empty($this->csimwintargets[$i]) ) {
|
---|
128 | $this->csimareas .= " target=\"".$this->csimwintargets[$i]."\" ";
|
---|
129 | }
|
---|
130 |
|
---|
131 | if( !empty($this->csimalts[$i]) ) {
|
---|
132 | $tmp=sprintf($this->csimalts[$i],$this->data[$i]);
|
---|
133 | $this->csimareas .= "alt=\"$tmp\" title=\"$tmp\" ";
|
---|
134 | }
|
---|
135 | $this->csimareas .= " />\n";
|
---|
136 | }
|
---|
137 |
|
---|
138 | }
|
---|
139 |
|
---|
140 | function SetLabels($aLabels,$aLblPosAdj="auto") {
|
---|
141 | $this->labels = $aLabels;
|
---|
142 | $this->ilabelposadj=$aLblPosAdj;
|
---|
143 | }
|
---|
144 |
|
---|
145 |
|
---|
146 | // Distance from the pie to the labels
|
---|
147 | function SetLabelMargin($m) {
|
---|
148 | $this->value->SetMargin($m);
|
---|
149 | }
|
---|
150 |
|
---|
151 | // Show a thin line from the pie to the label for a specific slice
|
---|
152 | function ShowLabelHint($f=true) {
|
---|
153 | $this->showlabelhint=$f;
|
---|
154 | }
|
---|
155 |
|
---|
156 | // Set color of hint line to label for each slice
|
---|
157 | function SetLabelHintColor($c) {
|
---|
158 | $this->labelhintcolor=$c;
|
---|
159 | }
|
---|
160 |
|
---|
161 | function SetHeight($aHeight) {
|
---|
162 | $this->iThickness = $aHeight;
|
---|
163 | }
|
---|
164 |
|
---|
165 |
|
---|
166 | // Normalize Angle between 0-360
|
---|
167 | function NormAngle($a) {
|
---|
168 | // Normalize anle to 0 to 2M_PI
|
---|
169 | //
|
---|
170 | if( $a > 0 ) {
|
---|
171 | while($a > 360) $a -= 360;
|
---|
172 | }
|
---|
173 | else {
|
---|
174 | while($a < 0) $a += 360;
|
---|
175 | }
|
---|
176 | if( $a < 0 )
|
---|
177 | $a = 360 + $a;
|
---|
178 |
|
---|
179 | if( $a == 360 ) $a=0;
|
---|
180 | return $a;
|
---|
181 | }
|
---|
182 |
|
---|
183 |
|
---|
184 |
|
---|
185 | // Draw one 3D pie slice at position ($xc,$yc) with height $z
|
---|
186 | function Pie3DSlice($img,$xc,$yc,$w,$h,$sa,$ea,$z,$fillcolor,$shadow=0.65) {
|
---|
187 |
|
---|
188 | // Due to the way the 3D Pie algorithm works we are
|
---|
189 | // guaranteed that any slice we get into this method
|
---|
190 | // belongs to either the left or right side of the
|
---|
191 | // pie ellipse. Hence, no slice will cross 90 or 270
|
---|
192 | // point.
|
---|
193 | if( ($sa < 90 && $ea > 90) || ( ($sa > 90 && $sa < 270) && $ea > 270) ) {
|
---|
194 | JpGraphError::RaiseL(14003);//('Internal assertion failed. Pie3D::Pie3DSlice');
|
---|
195 | exit(1);
|
---|
196 | }
|
---|
197 |
|
---|
198 | $p[] = array();
|
---|
199 |
|
---|
200 | // Setup pre-calculated values
|
---|
201 | $rsa = $sa/180*M_PI; // to Rad
|
---|
202 | $rea = $ea/180*M_PI; // to Rad
|
---|
203 | $sinsa = sin($rsa);
|
---|
204 | $cossa = cos($rsa);
|
---|
205 | $sinea = sin($rea);
|
---|
206 | $cosea = cos($rea);
|
---|
207 |
|
---|
208 | // p[] is the points for the overall slice and
|
---|
209 | // pt[] is the points for the top pie
|
---|
210 |
|
---|
211 | // Angular step when approximating the arc with a polygon train.
|
---|
212 | $step = 0.05;
|
---|
213 |
|
---|
214 | if( $sa >= 270 ) {
|
---|
215 | if( $ea > 360 || ($ea > 0 && $ea <= 90) ) {
|
---|
216 | if( $ea > 0 && $ea <= 90 ) {
|
---|
217 | // Adjust angle to simplify conditions in loops
|
---|
218 | $rea += 2*M_PI;
|
---|
219 | }
|
---|
220 |
|
---|
221 | $p = array($xc,$yc,$xc,$yc+$z,
|
---|
222 | $xc+$w*$cossa,$z+$yc-$h*$sinsa);
|
---|
223 | $pt = array($xc,$yc,$xc+$w*$cossa,$yc-$h*$sinsa);
|
---|
224 |
|
---|
225 | for( $a=$rsa; $a < 2*M_PI; $a += $step ) {
|
---|
226 | $tca = cos($a);
|
---|
227 | $tsa = sin($a);
|
---|
228 | $p[] = $xc+$w*$tca;
|
---|
229 | $p[] = $z+$yc-$h*$tsa;
|
---|
230 | $pt[] = $xc+$w*$tca;
|
---|
231 | $pt[] = $yc-$h*$tsa;
|
---|
232 | }
|
---|
233 |
|
---|
234 | $pt[] = $xc+$w;
|
---|
235 | $pt[] = $yc;
|
---|
236 |
|
---|
237 | $p[] = $xc+$w;
|
---|
238 | $p[] = $z+$yc;
|
---|
239 | $p[] = $xc+$w;
|
---|
240 | $p[] = $yc;
|
---|
241 | $p[] = $xc;
|
---|
242 | $p[] = $yc;
|
---|
243 |
|
---|
244 | for( $a=2*M_PI+$step; $a < $rea; $a += $step ) {
|
---|
245 | $pt[] = $xc + $w*cos($a);
|
---|
246 | $pt[] = $yc - $h*sin($a);
|
---|
247 | }
|
---|
248 |
|
---|
249 | $pt[] = $xc+$w*$cosea;
|
---|
250 | $pt[] = $yc-$h*$sinea;
|
---|
251 | $pt[] = $xc;
|
---|
252 | $pt[] = $yc;
|
---|
253 |
|
---|
254 | }
|
---|
255 | else {
|
---|
256 | $p = array($xc,$yc,$xc,$yc+$z,
|
---|
257 | $xc+$w*$cossa,$z+$yc-$h*$sinsa);
|
---|
258 | $pt = array($xc,$yc,$xc+$w*$cossa,$yc-$h*$sinsa);
|
---|
259 |
|
---|
260 | $rea = $rea == 0.0 ? 2*M_PI : $rea;
|
---|
261 | for( $a=$rsa; $a < $rea; $a += $step ) {
|
---|
262 | $tca = cos($a);
|
---|
263 | $tsa = sin($a);
|
---|
264 | $p[] = $xc+$w*$tca;
|
---|
265 | $p[] = $z+$yc-$h*$tsa;
|
---|
266 | $pt[] = $xc+$w*$tca;
|
---|
267 | $pt[] = $yc-$h*$tsa;
|
---|
268 | }
|
---|
269 |
|
---|
270 | $pt[] = $xc+$w*$cosea;
|
---|
271 | $pt[] = $yc-$h*$sinea;
|
---|
272 | $pt[] = $xc;
|
---|
273 | $pt[] = $yc;
|
---|
274 |
|
---|
275 | $p[] = $xc+$w*$cosea;
|
---|
276 | $p[] = $z+$yc-$h*$sinea;
|
---|
277 | $p[] = $xc+$w*$cosea;
|
---|
278 | $p[] = $yc-$h*$sinea;
|
---|
279 | $p[] = $xc;
|
---|
280 | $p[] = $yc;
|
---|
281 | }
|
---|
282 | }
|
---|
283 | elseif( $sa >= 180 ) {
|
---|
284 | $p = array($xc,$yc,$xc,$yc+$z,$xc+$w*$cosea,$z+$yc-$h*$sinea);
|
---|
285 | $pt = array($xc,$yc,$xc+$w*$cosea,$yc-$h*$sinea);
|
---|
286 |
|
---|
287 | for( $a=$rea; $a>$rsa; $a -= $step ) {
|
---|
288 | $tca = cos($a);
|
---|
289 | $tsa = sin($a);
|
---|
290 | $p[] = $xc+$w*$tca;
|
---|
291 | $p[] = $z+$yc-$h*$tsa;
|
---|
292 | $pt[] = $xc+$w*$tca;
|
---|
293 | $pt[] = $yc-$h*$tsa;
|
---|
294 | }
|
---|
295 |
|
---|
296 | $pt[] = $xc+$w*$cossa;
|
---|
297 | $pt[] = $yc-$h*$sinsa;
|
---|
298 | $pt[] = $xc;
|
---|
299 | $pt[] = $yc;
|
---|
300 |
|
---|
301 | $p[] = $xc+$w*$cossa;
|
---|
302 | $p[] = $z+$yc-$h*$sinsa;
|
---|
303 | $p[] = $xc+$w*$cossa;
|
---|
304 | $p[] = $yc-$h*$sinsa;
|
---|
305 | $p[] = $xc;
|
---|
306 | $p[] = $yc;
|
---|
307 |
|
---|
308 | }
|
---|
309 | elseif( $sa >= 90 ) {
|
---|
310 | if( $ea > 180 ) {
|
---|
311 | $p = array($xc,$yc,$xc,$yc+$z,$xc+$w*$cosea,$z+$yc-$h*$sinea);
|
---|
312 | $pt = array($xc,$yc,$xc+$w*$cosea,$yc-$h*$sinea);
|
---|
313 |
|
---|
314 | for( $a=$rea; $a > M_PI; $a -= $step ) {
|
---|
315 | $tca = cos($a);
|
---|
316 | $tsa = sin($a);
|
---|
317 | $p[] = $xc+$w*$tca;
|
---|
318 | $p[] = $z + $yc - $h*$tsa;
|
---|
319 | $pt[] = $xc+$w*$tca;
|
---|
320 | $pt[] = $yc-$h*$tsa;
|
---|
321 | }
|
---|
322 |
|
---|
323 | $p[] = $xc-$w;
|
---|
324 | $p[] = $z+$yc;
|
---|
325 | $p[] = $xc-$w;
|
---|
326 | $p[] = $yc;
|
---|
327 | $p[] = $xc;
|
---|
328 | $p[] = $yc;
|
---|
329 |
|
---|
330 | $pt[] = $xc-$w;
|
---|
331 | $pt[] = $z+$yc;
|
---|
332 | $pt[] = $xc-$w;
|
---|
333 | $pt[] = $yc;
|
---|
334 |
|
---|
335 | for( $a=M_PI-$step; $a > $rsa; $a -= $step ) {
|
---|
336 | $pt[] = $xc + $w*cos($a);
|
---|
337 | $pt[] = $yc - $h*sin($a);
|
---|
338 | }
|
---|
339 |
|
---|
340 | $pt[] = $xc+$w*$cossa;
|
---|
341 | $pt[] = $yc-$h*$sinsa;
|
---|
342 | $pt[] = $xc;
|
---|
343 | $pt[] = $yc;
|
---|
344 |
|
---|
345 | }
|
---|
346 | else { // $sa >= 90 && $ea <= 180
|
---|
347 | $p = array($xc,$yc,$xc,$yc+$z,
|
---|
348 | $xc+$w*$cosea,$z+$yc-$h*$sinea,
|
---|
349 | $xc+$w*$cosea,$yc-$h*$sinea,
|
---|
350 | $xc,$yc);
|
---|
351 |
|
---|
352 | $pt = array($xc,$yc,$xc+$w*$cosea,$yc-$h*$sinea);
|
---|
353 |
|
---|
354 | for( $a=$rea; $a>$rsa; $a -= $step ) {
|
---|
355 | $pt[] = $xc + $w*cos($a);
|
---|
356 | $pt[] = $yc - $h*sin($a);
|
---|
357 | }
|
---|
358 |
|
---|
359 | $pt[] = $xc+$w*$cossa;
|
---|
360 | $pt[] = $yc-$h*$sinsa;
|
---|
361 | $pt[] = $xc;
|
---|
362 | $pt[] = $yc;
|
---|
363 |
|
---|
364 | }
|
---|
365 | }
|
---|
366 | else { // sa > 0 && ea < 90
|
---|
367 |
|
---|
368 | $p = array($xc,$yc,$xc,$yc+$z,
|
---|
369 | $xc+$w*$cossa,$z+$yc-$h*$sinsa,
|
---|
370 | $xc+$w*$cossa,$yc-$h*$sinsa,
|
---|
371 | $xc,$yc);
|
---|
372 |
|
---|
373 | $pt = array($xc,$yc,$xc+$w*$cossa,$yc-$h*$sinsa);
|
---|
374 |
|
---|
375 | for( $a=$rsa; $a < $rea; $a += $step ) {
|
---|
376 | $pt[] = $xc + $w*cos($a);
|
---|
377 | $pt[] = $yc - $h*sin($a);
|
---|
378 | }
|
---|
379 |
|
---|
380 | $pt[] = $xc+$w*$cosea;
|
---|
381 | $pt[] = $yc-$h*$sinea;
|
---|
382 | $pt[] = $xc;
|
---|
383 | $pt[] = $yc;
|
---|
384 | }
|
---|
385 |
|
---|
386 | $img->PushColor($fillcolor.":".$shadow);
|
---|
387 | $img->FilledPolygon($p);
|
---|
388 | $img->PopColor();
|
---|
389 |
|
---|
390 | $img->PushColor($fillcolor);
|
---|
391 | $img->FilledPolygon($pt);
|
---|
392 | $img->PopColor();
|
---|
393 | }
|
---|
394 |
|
---|
395 | function SetStartAngle($aStart) {
|
---|
396 | if( $aStart < 0 || $aStart > 360 ) {
|
---|
397 | JpGraphError::RaiseL(14004);//('Slice start angle must be between 0 and 360 degrees.');
|
---|
398 | }
|
---|
399 | $this->startangle = $aStart;
|
---|
400 | }
|
---|
401 |
|
---|
402 | // Draw a 3D Pie
|
---|
403 | function Pie3D($aaoption,$img,$data,$colors,$xc,$yc,$d,$angle,$z,
|
---|
404 | $shadow=0.65,$startangle=0,$edgecolor="",$edgeweight=1) {
|
---|
405 |
|
---|
406 | //---------------------------------------------------------------------------
|
---|
407 | // As usual the algorithm get more complicated than I originally
|
---|
408 | // envisioned. I believe that this is as simple as it is possible
|
---|
409 | // to do it with the features I want. It's a good exercise to start
|
---|
410 | // thinking on how to do this to convince your self that all this
|
---|
411 | // is really needed for the general case.
|
---|
412 | //
|
---|
413 | // The algorithm two draw 3D pies without "real 3D" is done in
|
---|
414 | // two steps.
|
---|
415 | // First imagine the pie cut in half through a thought line between
|
---|
416 | // 12'a clock and 6'a clock. It now easy to imagine that we can plot
|
---|
417 | // the individual slices for each half by starting with the topmost
|
---|
418 | // pie slice and continue down to 6'a clock.
|
---|
419 | //
|
---|
420 | // In the algortithm this is done in three principal steps
|
---|
421 | // Step 1. Do the knife cut to ensure by splitting slices that extends
|
---|
422 | // over the cut line. This is done by splitting the original slices into
|
---|
423 | // upto 3 subslices.
|
---|
424 | // Step 2. Find the top slice for each half
|
---|
425 | // Step 3. Draw the slices from top to bottom
|
---|
426 | //
|
---|
427 | // The thing that slightly complicates this scheme with all the
|
---|
428 | // angle comparisons below is that we can have an arbitrary start
|
---|
429 | // angle so we must take into account the different equivalence classes.
|
---|
430 | // For the same reason we must walk through the angle array in a
|
---|
431 | // modulo fashion.
|
---|
432 | //
|
---|
433 | // Limitations of algorithm:
|
---|
434 | // * A small exploded slice which crosses the 270 degree point
|
---|
435 | // will get slightly nagged close to the center due to the fact that
|
---|
436 | // we print the slices in Z-order and that the slice left part
|
---|
437 | // get printed first and might get slightly nagged by a larger
|
---|
438 | // slice on the right side just before the right part of the small
|
---|
439 | // slice. Not a major problem though.
|
---|
440 | //---------------------------------------------------------------------------
|
---|
441 |
|
---|
442 |
|
---|
443 | // Determine the height of the ellippse which gives an
|
---|
444 | // indication of the inclination angle
|
---|
445 | $h = ($angle/90.0)*$d;
|
---|
446 | $sum = 0;
|
---|
447 | for($i=0; $i<count($data); ++$i ) {
|
---|
448 | $sum += $data[$i];
|
---|
449 | }
|
---|
450 |
|
---|
451 | // Special optimization
|
---|
452 | if( $sum==0 ) return;
|
---|
453 |
|
---|
454 | if( $this->labeltype == 2 ) {
|
---|
455 | $this->adjusted_data = $this->AdjPercentage($data);
|
---|
456 | }
|
---|
457 |
|
---|
458 | // Setup the start
|
---|
459 | $accsum = 0;
|
---|
460 | $a = $startangle;
|
---|
461 | $a = $this->NormAngle($a);
|
---|
462 |
|
---|
463 | //
|
---|
464 | // Step 1 . Split all slices that crosses 90 or 270
|
---|
465 | //
|
---|
466 | $idx=0;
|
---|
467 | $adjexplode=array();
|
---|
468 | $numcolors = count($colors);
|
---|
469 | for($i=0; $i<count($data); ++$i, ++$idx ) {
|
---|
470 | $da = $data[$i]/$sum * 360;
|
---|
471 |
|
---|
472 | if( empty($this->explode_radius[$i]) )
|
---|
473 | $this->explode_radius[$i]=0;
|
---|
474 |
|
---|
475 | $expscale=1;
|
---|
476 | if( $aaoption == 1 )
|
---|
477 | $expscale=2;
|
---|
478 |
|
---|
479 | $la = $a + $da/2;
|
---|
480 | $explode = array( $xc + $this->explode_radius[$i]*cos($la*M_PI/180)*$expscale,
|
---|
481 | $yc - $this->explode_radius[$i]*sin($la*M_PI/180) * ($h/$d) *$expscale );
|
---|
482 | $adjexplode[$idx] = $explode;
|
---|
483 | $labeldata[$i] = array($la,$explode[0],$explode[1]);
|
---|
484 | $originalangles[$i] = array($a,$a+$da);
|
---|
485 |
|
---|
486 | $ne = $this->NormAngle($a+$da);
|
---|
487 | if( $da <= 180 ) {
|
---|
488 | // If the slice size is <= 90 it can at maximum cut across
|
---|
489 | // one boundary (either 90 or 270) where it needs to be split
|
---|
490 | $split=-1; // no split
|
---|
491 | if( ($da<=90 && ($a <= 90 && $ne > 90)) ||
|
---|
492 | (($da <= 180 && $da >90) && (($a < 90 || $a >= 270) && $ne > 90)) ) {
|
---|
493 | $split = 90;
|
---|
494 | }
|
---|
495 | elseif( ($da<=90 && ($a <= 270 && $ne > 270)) ||
|
---|
496 | (($da<=180 && $da>90) && ($a >= 90 && $a < 270 && ($a+$da) > 270 )) ) {
|
---|
497 | $split = 270;
|
---|
498 | }
|
---|
499 | if( $split > 0 ) { // split in two
|
---|
500 | $angles[$idx] = array($a,$split);
|
---|
501 | $adjcolors[$idx] = $colors[$i % $numcolors];
|
---|
502 | $adjexplode[$idx] = $explode;
|
---|
503 | $angles[++$idx] = array($split,$ne);
|
---|
504 | $adjcolors[$idx] = $colors[$i % $numcolors];
|
---|
505 | $adjexplode[$idx] = $explode;
|
---|
506 | }
|
---|
507 | else { // no split
|
---|
508 | $angles[$idx] = array($a,$ne);
|
---|
509 | $adjcolors[$idx] = $colors[$i % $numcolors];
|
---|
510 | $adjexplode[$idx] = $explode;
|
---|
511 | }
|
---|
512 | }
|
---|
513 | else {
|
---|
514 | // da>180
|
---|
515 | // Slice may, depending on position, cross one or two
|
---|
516 | // bonudaries
|
---|
517 |
|
---|
518 | if( $a < 90 )
|
---|
519 | $split = 90;
|
---|
520 | elseif( $a <= 270 )
|
---|
521 | $split = 270;
|
---|
522 | else
|
---|
523 | $split = 90;
|
---|
524 |
|
---|
525 | $angles[$idx] = array($a,$split);
|
---|
526 | $adjcolors[$idx] = $colors[$i % $numcolors];
|
---|
527 | $adjexplode[$idx] = $explode;
|
---|
528 | //if( $a+$da > 360-$split ) {
|
---|
529 | // For slices larger than 270 degrees we might cross
|
---|
530 | // another boundary as well. This means that we must
|
---|
531 | // split the slice further. The comparison gets a little
|
---|
532 | // bit complicated since we must take into accound that
|
---|
533 | // a pie might have a startangle >0 and hence a slice might
|
---|
534 | // wrap around the 0 angle.
|
---|
535 | // Three cases:
|
---|
536 | // a) Slice starts before 90 and hence gets a split=90, but
|
---|
537 | // we must also check if we need to split at 270
|
---|
538 | // b) Slice starts after 90 but before 270 and slices
|
---|
539 | // crosses 90 (after a wrap around of 0)
|
---|
540 | // c) If start is > 270 (hence the firstr split is at 90)
|
---|
541 | // and the slice is so large that it goes all the way
|
---|
542 | // around 270.
|
---|
543 | if( ($a < 90 && ($a+$da > 270)) ||
|
---|
544 | ($a > 90 && $a<=270 && ($a+$da>360+90) ) ||
|
---|
545 | ($a > 270 && $this->NormAngle($a+$da)>270) ) {
|
---|
546 | $angles[++$idx] = array($split,360-$split);
|
---|
547 | $adjcolors[$idx] = $colors[$i % $numcolors];
|
---|
548 | $adjexplode[$idx] = $explode;
|
---|
549 | $angles[++$idx] = array(360-$split,$ne);
|
---|
550 | $adjcolors[$idx] = $colors[$i % $numcolors];
|
---|
551 | $adjexplode[$idx] = $explode;
|
---|
552 | }
|
---|
553 | else {
|
---|
554 | // Just a simple split to the previous decided
|
---|
555 | // angle.
|
---|
556 | $angles[++$idx] = array($split,$ne);
|
---|
557 | $adjcolors[$idx] = $colors[$i % $numcolors];
|
---|
558 | $adjexplode[$idx] = $explode;
|
---|
559 | }
|
---|
560 | }
|
---|
561 | $a += $da;
|
---|
562 | $a = $this->NormAngle($a);
|
---|
563 | }
|
---|
564 |
|
---|
565 | // Total number of slices
|
---|
566 | $n = count($angles);
|
---|
567 |
|
---|
568 | for($i=0; $i<$n; ++$i) {
|
---|
569 | list($dbgs,$dbge) = $angles[$i];
|
---|
570 | }
|
---|
571 |
|
---|
572 | //
|
---|
573 | // Step 2. Find start index (first pie that starts in upper left quadrant)
|
---|
574 | //
|
---|
575 | $minval = $angles[0][0];
|
---|
576 | $min = 0;
|
---|
577 | for( $i=0; $i<$n; ++$i ) {
|
---|
578 | if( $angles[$i][0] < $minval ) {
|
---|
579 | $minval = $angles[$i][0];
|
---|
580 | $min = $i;
|
---|
581 | }
|
---|
582 | }
|
---|
583 | $j = $min;
|
---|
584 | $cnt = 0;
|
---|
585 | while( $angles[$j][1] <= 90 ) {
|
---|
586 | $j++;
|
---|
587 | if( $j>=$n) {
|
---|
588 | $j=0;
|
---|
589 | }
|
---|
590 | if( $cnt > $n ) {
|
---|
591 | JpGraphError::RaiseL(14005);
|
---|
592 | //("Pie3D Internal error (#1). Trying to wrap twice when looking for start index");
|
---|
593 | }
|
---|
594 | ++$cnt;
|
---|
595 | }
|
---|
596 | $start = $j;
|
---|
597 |
|
---|
598 | //
|
---|
599 | // Step 3. Print slices in z-order
|
---|
600 | //
|
---|
601 | $cnt = 0;
|
---|
602 |
|
---|
603 | // First stroke all the slices between 90 and 270 (left half circle)
|
---|
604 | // counterclockwise
|
---|
605 |
|
---|
606 | while( $angles[$j][0] < 270 && $aaoption !== 2 ) {
|
---|
607 |
|
---|
608 | list($x,$y) = $adjexplode[$j];
|
---|
609 |
|
---|
610 | $this->Pie3DSlice($img,$x,$y,$d,$h,$angles[$j][0],$angles[$j][1],
|
---|
611 | $z,$adjcolors[$j],$shadow);
|
---|
612 |
|
---|
613 | $last = array($x,$y,$j);
|
---|
614 |
|
---|
615 | $j++;
|
---|
616 | if( $j >= $n ) $j=0;
|
---|
617 | if( $cnt > $n ) {
|
---|
618 | JpGraphError::RaiseL(14006);
|
---|
619 | //("Pie3D Internal Error: Z-Sorting algorithm for 3D Pies is not working properly (2). Trying to wrap twice while stroking.");
|
---|
620 | }
|
---|
621 | ++$cnt;
|
---|
622 | }
|
---|
623 |
|
---|
624 | $slice_left = $n-$cnt;
|
---|
625 | $j=$start-1;
|
---|
626 | if($j<0) $j=$n-1;
|
---|
627 | $cnt = 0;
|
---|
628 |
|
---|
629 | // The stroke all slices from 90 to -90 (right half circle)
|
---|
630 | // clockwise
|
---|
631 | while( $cnt < $slice_left && $aaoption !== 2 ) {
|
---|
632 |
|
---|
633 | list($x,$y) = $adjexplode[$j];
|
---|
634 |
|
---|
635 | $this->Pie3DSlice($img,$x,$y,$d,$h,$angles[$j][0],$angles[$j][1],
|
---|
636 | $z,$adjcolors[$j],$shadow);
|
---|
637 | $j--;
|
---|
638 | if( $cnt > $n ) {
|
---|
639 | JpGraphError::RaiseL(14006);
|
---|
640 | //("Pie3D Internal Error: Z-Sorting algorithm for 3D Pies is not working properly (2). Trying to wrap twice while stroking.");
|
---|
641 | }
|
---|
642 | if($j<0) $j=$n-1;
|
---|
643 | $cnt++;
|
---|
644 | }
|
---|
645 |
|
---|
646 | // Now do a special thing. Stroke the last slice on the left
|
---|
647 | // halfcircle one more time. This is needed in the case where
|
---|
648 | // the slice close to 270 have been exploded. In that case the
|
---|
649 | // part of the slice close to the center of the pie might be
|
---|
650 | // slightly nagged.
|
---|
651 | if( $aaoption !== 2 )
|
---|
652 | $this->Pie3DSlice($img,$last[0],$last[1],$d,$h,$angles[$last[2]][0],
|
---|
653 | $angles[$last[2]][1],$z,$adjcolors[$last[2]],$shadow);
|
---|
654 |
|
---|
655 |
|
---|
656 | if( $aaoption !== 1 ) {
|
---|
657 | // Now print possible labels and add csim
|
---|
658 | $this->value->ApplyFont($img);
|
---|
659 | $margin = $img->GetFontHeight()/2 + $this->value->margin ;
|
---|
660 | for($i=0; $i < count($data); ++$i ) {
|
---|
661 | $la = $labeldata[$i][0];
|
---|
662 | $x = $labeldata[$i][1] + cos($la*M_PI/180)*($d+$margin)*$this->ilabelposadj;
|
---|
663 | $y = $labeldata[$i][2] - sin($la*M_PI/180)*($h+$margin)*$this->ilabelposadj;
|
---|
664 | if( $this->ilabelposadj >= 1.0 ) {
|
---|
665 | if( $la > 180 && $la < 360 ) $y += $z;
|
---|
666 | }
|
---|
667 | if( $this->labeltype == 0 ) {
|
---|
668 | if( $sum > 0 )
|
---|
669 | $l = 100*$data[$i]/$sum;
|
---|
670 | else
|
---|
671 | $l = 0;
|
---|
672 | }
|
---|
673 | elseif( $this->labeltype == 1 ) {
|
---|
674 | $l = $data[$i];
|
---|
675 | }
|
---|
676 | else {
|
---|
677 | $l = $this->adjusted_data[$i];
|
---|
678 | }
|
---|
679 | if( isset($this->labels[$i]) && is_string($this->labels[$i]) )
|
---|
680 | $l=sprintf($this->labels[$i],$l);
|
---|
681 |
|
---|
682 | $this->StrokeLabels($l,$img,$labeldata[$i][0]*M_PI/180,$x,$y,$z);
|
---|
683 |
|
---|
684 | $this->Add3DSliceToCSIM($i,$labeldata[$i][1],$labeldata[$i][2],$h*2,$d*2,$z,
|
---|
685 | $originalangles[$i][0],$originalangles[$i][1]);
|
---|
686 | }
|
---|
687 | }
|
---|
688 |
|
---|
689 | //
|
---|
690 | // Finally add potential lines in pie
|
---|
691 | //
|
---|
692 |
|
---|
693 | if( $edgecolor=="" || $aaoption !== 0 ) return;
|
---|
694 |
|
---|
695 | $accsum = 0;
|
---|
696 | $a = $startangle;
|
---|
697 | $a = $this->NormAngle($a);
|
---|
698 |
|
---|
699 | $a *= M_PI/180.0;
|
---|
700 |
|
---|
701 | $idx=0;
|
---|
702 | $img->PushColor($edgecolor);
|
---|
703 | $img->SetLineWeight($edgeweight);
|
---|
704 |
|
---|
705 | $fulledge = true;
|
---|
706 | for($i=0; $i < count($data) && $fulledge; ++$i ) {
|
---|
707 | if( empty($this->explode_radius[$i]) )
|
---|
708 | $this->explode_radius[$i]=0;
|
---|
709 | if( $this->explode_radius[$i] > 0 ) {
|
---|
710 | $fulledge = false;
|
---|
711 | }
|
---|
712 | }
|
---|
713 |
|
---|
714 |
|
---|
715 | for($i=0; $i < count($data); ++$i, ++$idx ) {
|
---|
716 |
|
---|
717 | $da = $data[$i]/$sum * 2*M_PI;
|
---|
718 | $this->StrokeFullSliceFrame($img,$xc,$yc,$a,$a+$da,$d,$h,$z,$edgecolor,
|
---|
719 | $this->explode_radius[$i],$fulledge);
|
---|
720 | $a += $da;
|
---|
721 | }
|
---|
722 | $img->PopColor();
|
---|
723 | }
|
---|
724 |
|
---|
725 | function StrokeFullSliceFrame($img,$xc,$yc,$sa,$ea,$w,$h,$z,$edgecolor,$exploderadius,$fulledge) {
|
---|
726 | $step = 0.02;
|
---|
727 |
|
---|
728 | if( $exploderadius > 0 ) {
|
---|
729 | $la = ($sa+$ea)/2;
|
---|
730 | $xc += $exploderadius*cos($la);
|
---|
731 | $yc -= $exploderadius*sin($la) * ($h/$w) ;
|
---|
732 |
|
---|
733 | }
|
---|
734 |
|
---|
735 | $p = array($xc,$yc,$xc+$w*cos($sa),$yc-$h*sin($sa));
|
---|
736 |
|
---|
737 | for($a=$sa; $a < $ea; $a += $step ) {
|
---|
738 | $p[] = $xc + $w*cos($a);
|
---|
739 | $p[] = $yc - $h*sin($a);
|
---|
740 | }
|
---|
741 |
|
---|
742 | $p[] = $xc+$w*cos($ea);
|
---|
743 | $p[] = $yc-$h*sin($ea);
|
---|
744 | $p[] = $xc;
|
---|
745 | $p[] = $yc;
|
---|
746 |
|
---|
747 | $img->SetColor($edgecolor);
|
---|
748 | $img->Polygon($p);
|
---|
749 |
|
---|
750 | // Unfortunately we can't really draw the full edge around the whole of
|
---|
751 | // of the slice if any of the slices are exploded. The reason is that
|
---|
752 | // this algorithm is to simply. There are cases where the edges will
|
---|
753 | // "overwrite" other slices when they have been exploded.
|
---|
754 | // Doing the full, proper 3D hidden lines stiff is actually quite
|
---|
755 | // tricky. So for exploded pies we only draw the top edge. Not perfect
|
---|
756 | // but the "real" solution is much more complicated.
|
---|
757 | if( $fulledge && !( $sa > 0 && $sa < M_PI && $ea < M_PI) ) {
|
---|
758 |
|
---|
759 | if($sa < M_PI && $ea > M_PI)
|
---|
760 | $sa = M_PI;
|
---|
761 |
|
---|
762 | if($sa < 2*M_PI && (($ea >= 2*M_PI) || ($ea > 0 && $ea < $sa ) ) )
|
---|
763 | $ea = 2*M_PI;
|
---|
764 |
|
---|
765 | if( $sa >= M_PI && $ea <= 2*M_PI ) {
|
---|
766 | $p = array($xc + $w*cos($sa),$yc - $h*sin($sa),
|
---|
767 | $xc + $w*cos($sa),$z + $yc - $h*sin($sa));
|
---|
768 |
|
---|
769 | for($a=$sa+$step; $a < $ea; $a += $step ) {
|
---|
770 | $p[] = $xc + $w*cos($a);
|
---|
771 | $p[] = $z + $yc - $h*sin($a);
|
---|
772 | }
|
---|
773 | $p[] = $xc + $w*cos($ea);
|
---|
774 | $p[] = $z + $yc - $h*sin($ea);
|
---|
775 | $p[] = $xc + $w*cos($ea);
|
---|
776 | $p[] = $yc - $h*sin($ea);
|
---|
777 | $img->SetColor($edgecolor);
|
---|
778 | $img->Polygon($p);
|
---|
779 | }
|
---|
780 | }
|
---|
781 | }
|
---|
782 |
|
---|
783 | function Stroke($img,$aaoption=0) {
|
---|
784 | $n = count($this->data);
|
---|
785 |
|
---|
786 | // If user hasn't set the colors use the theme array
|
---|
787 | if( $this->setslicecolors==null ) {
|
---|
788 | $colors = array_keys($img->rgb->rgb_table);
|
---|
789 | sort($colors);
|
---|
790 | $idx_a=$this->themearr[$this->theme];
|
---|
791 | $ca = array();
|
---|
792 | $m = count($idx_a);
|
---|
793 | for($i=0; $i < $m; ++$i)
|
---|
794 | $ca[$i] = $colors[$idx_a[$i]];
|
---|
795 | $ca = array_reverse(array_slice($ca,0,$n));
|
---|
796 | }
|
---|
797 | else {
|
---|
798 | $ca = $this->setslicecolors;
|
---|
799 | }
|
---|
800 |
|
---|
801 |
|
---|
802 | if( $this->posx <= 1 && $this->posx > 0 )
|
---|
803 | $xc = round($this->posx*$img->width);
|
---|
804 | else
|
---|
805 | $xc = $this->posx ;
|
---|
806 |
|
---|
807 | if( $this->posy <= 1 && $this->posy > 0 )
|
---|
808 | $yc = round($this->posy*$img->height);
|
---|
809 | else
|
---|
810 | $yc = $this->posy ;
|
---|
811 |
|
---|
812 | if( $this->radius <= 1 ) {
|
---|
813 | $width = floor($this->radius*min($img->width,$img->height));
|
---|
814 | // Make sure that the pie doesn't overflow the image border
|
---|
815 | // The 0.9 factor is simply an extra margin to leave some space
|
---|
816 | // between the pie an the border of the image.
|
---|
817 | $width = min($width,min($xc*0.9,($yc*90/$this->angle-$width/4)*0.9));
|
---|
818 | }
|
---|
819 | else {
|
---|
820 | $width = $this->radius * ($aaoption === 1 ? 2 : 1 ) ;
|
---|
821 | }
|
---|
822 |
|
---|
823 | // Add a sanity check for width
|
---|
824 | if( $width < 1 ) {
|
---|
825 | JpGraphError::RaiseL(14007);//("Width for 3D Pie is 0. Specify a size > 0");
|
---|
826 | }
|
---|
827 |
|
---|
828 | // Establish a thickness. By default the thickness is a fifth of the
|
---|
829 | // pie slice width (=pie radius) but since the perspective depends
|
---|
830 | // on the inclination angle we use some heuristics to make the edge
|
---|
831 | // slightly thicker the less the angle.
|
---|
832 |
|
---|
833 | // Has user specified an absolute thickness? In that case use
|
---|
834 | // that instead
|
---|
835 |
|
---|
836 | if( $this->iThickness ) {
|
---|
837 | $thick = $this->iThickness;
|
---|
838 | $thick *= ($aaoption === 1 ? 2 : 1 );
|
---|
839 | }
|
---|
840 | else
|
---|
841 | $thick = $width/12;
|
---|
842 | $a = $this->angle;
|
---|
843 | if( $a <= 30 ) $thick *= 1.6;
|
---|
844 | elseif( $a <= 40 ) $thick *= 1.4;
|
---|
845 | elseif( $a <= 50 ) $thick *= 1.2;
|
---|
846 | elseif( $a <= 60 ) $thick *= 1.0;
|
---|
847 | elseif( $a <= 70 ) $thick *= 0.8;
|
---|
848 | elseif( $a <= 80 ) $thick *= 0.7;
|
---|
849 | else $thick *= 0.6;
|
---|
850 |
|
---|
851 | $thick = floor($thick);
|
---|
852 |
|
---|
853 | if( $this->explode_all )
|
---|
854 | for($i=0; $i < $n; ++$i)
|
---|
855 | $this->explode_radius[$i]=$this->explode_r;
|
---|
856 |
|
---|
857 | $this->Pie3D($aaoption,$img,$this->data, $ca, $xc, $yc, $width, $this->angle,
|
---|
858 | $thick, 0.65, $this->startangle, $this->edgecolor, $this->edgeweight);
|
---|
859 |
|
---|
860 | // Adjust title position
|
---|
861 | if( $aaoption != 1 ) {
|
---|
862 | $this->title->SetPos($xc,$yc-$this->title->GetFontHeight($img)-$width/2-$this->title->margin, "center","bottom");
|
---|
863 | $this->title->Stroke($img);
|
---|
864 | }
|
---|
865 | }
|
---|
866 |
|
---|
867 | //---------------
|
---|
868 | // PRIVATE METHODS
|
---|
869 |
|
---|
870 | // Position the labels of each slice
|
---|
871 | function StrokeLabels($label,$img,$a,$xp,$yp,$z) {
|
---|
872 | $this->value->halign="left";
|
---|
873 | $this->value->valign="top";
|
---|
874 |
|
---|
875 | // Position the axis title.
|
---|
876 | // dx, dy is the offset from the top left corner of the bounding box that sorrounds the text
|
---|
877 | // that intersects with the extension of the corresponding axis. The code looks a little
|
---|
878 | // bit messy but this is really the only way of having a reasonable position of the
|
---|
879 | // axis titles.
|
---|
880 | $this->value->ApplyFont($img);
|
---|
881 | $h=$img->GetTextHeight($label);
|
---|
882 | // For numeric values the format of the display value
|
---|
883 | // must be taken into account
|
---|
884 | if( is_numeric($label) ) {
|
---|
885 | if( $label >= 0 )
|
---|
886 | $w=$img->GetTextWidth(sprintf($this->value->format,$label));
|
---|
887 | else
|
---|
888 | $w=$img->GetTextWidth(sprintf($this->value->negformat,$label));
|
---|
889 | }
|
---|
890 | else
|
---|
891 | $w=$img->GetTextWidth($label);
|
---|
892 | while( $a > 2*M_PI ) $a -= 2*M_PI;
|
---|
893 | if( $a>=7*M_PI/4 || $a <= M_PI/4 ) $dx=0;
|
---|
894 | if( $a>=M_PI/4 && $a <= 3*M_PI/4 ) $dx=($a-M_PI/4)*2/M_PI;
|
---|
895 | if( $a>=3*M_PI/4 && $a <= 5*M_PI/4 ) $dx=1;
|
---|
896 | if( $a>=5*M_PI/4 && $a <= 7*M_PI/4 ) $dx=(1-($a-M_PI*5/4)*2/M_PI);
|
---|
897 |
|
---|
898 | if( $a>=7*M_PI/4 ) $dy=(($a-M_PI)-3*M_PI/4)*2/M_PI;
|
---|
899 | if( $a<=M_PI/4 ) $dy=(1-$a*2/M_PI);
|
---|
900 | if( $a>=M_PI/4 && $a <= 3*M_PI/4 ) $dy=1;
|
---|
901 | if( $a>=3*M_PI/4 && $a <= 5*M_PI/4 ) $dy=(1-($a-3*M_PI/4)*2/M_PI);
|
---|
902 | if( $a>=5*M_PI/4 && $a <= 7*M_PI/4 ) $dy=0;
|
---|
903 |
|
---|
904 | $x = round($xp-$dx*$w);
|
---|
905 | $y = round($yp-$dy*$h);
|
---|
906 |
|
---|
907 |
|
---|
908 | // Mark anchor point for debugging
|
---|
909 | /*
|
---|
910 | $img->SetColor('red');
|
---|
911 | $img->Line($xp-10,$yp,$xp+10,$yp);
|
---|
912 | $img->Line($xp,$yp-10,$xp,$yp+10);
|
---|
913 | */
|
---|
914 | $oldmargin = $this->value->margin;
|
---|
915 | $this->value->margin=0;
|
---|
916 | $this->value->Stroke($img,$label,$x,$y);
|
---|
917 | $this->value->margin=$oldmargin;
|
---|
918 |
|
---|
919 | }
|
---|
920 | } // Class
|
---|
921 |
|
---|
922 | /* EOF */
|
---|
923 | ?>
|
---|