radius = 0.5;
$this->data = $data;
$this->title = new Text("");
$this->title->SetFont(FF_FONT1,FS_BOLD);
$this->value = new DisplayValue();
$this->value->Show();
$this->value->SetFormat('%.0f%%');
}
//---------------
// PUBLIC METHODS
// Set label arrays
function SetLegends($aLegend) {
$this->legends = array_reverse(array_slice($aLegend,0,count($this->data)));
}
function SetSliceColors($aColors) {
$this->setslicecolors = $aColors;
}
function Legend($aGraph) {
parent::Legend($aGraph);
$aGraph->legend->txtcol = array_reverse($aGraph->legend->txtcol);
}
function SetCSIMTargets($aTargets,$aAlts='',$aWinTargets='') {
$this->csimtargets = $aTargets;
$this->csimwintargets = $aWinTargets;
$this->csimalts = $aAlts;
}
// Should the slices be separated by a line? If color is specified as "" no line
// will be used to separate pie slices.
function SetEdge($aColor='black',$aWeight=1) {
$this->edgecolor = $aColor;
$this->edgeweight = $aWeight;
}
// Specify projection angle for 3D in degrees
// Must be between 20 and 70 degrees
function SetAngle($a) {
if( $a<5 || $a>90 ) {
JpGraphError::RaiseL(14002);
//("PiePlot3D::SetAngle() 3D Pie projection angle must be between 5 and 85 degrees.");
}
else {
$this->angle = $a;
}
}
function Add3DSliceToCSIM($i,$xc,$yc,$height,$width,$thick,$sa,$ea) { //Slice number, ellipse centre (x,y), height, width, start angle, end angle
$sa *= M_PI/180;
$ea *= M_PI/180;
//add coordinates of the centre to the map
$coords = "$xc, $yc";
//add coordinates of the first point on the arc to the map
$xp = floor($width*cos($sa)/2+$xc);
$yp = floor($yc-$height*sin($sa)/2);
$coords.= ", $xp, $yp";
//If on the front half, add the thickness offset
if ($sa >= M_PI && $sa <= 2*M_PI*1.01) {
$yp = floor($yp+$thick);
$coords.= ", $xp, $yp";
}
//add coordinates every 0.2 radians
$a=$sa+0.2;
while ($a<$ea) {
$xp = floor($width*cos($a)/2+$xc);
if ($a >= M_PI && $a <= 2*M_PI*1.01) {
$yp = floor($yc-($height*sin($a)/2)+$thick);
} else {
$yp = floor($yc-$height*sin($a)/2);
}
$coords.= ", $xp, $yp";
$a += 0.2;
}
//Add the last point on the arc
$xp = floor($width*cos($ea)/2+$xc);
$yp = floor($yc-$height*sin($ea)/2);
if ($ea >= M_PI && $ea <= 2*M_PI*1.01) {
$coords.= ", $xp, ".floor($yp+$thick);
}
$coords.= ", $xp, $yp";
$alt='';
if( !empty($this->csimtargets[$i]) ) {
$this->csimareas .= "csimtargets[$i]."\"";
if( !empty($this->csimwintargets[$i]) ) {
$this->csimareas .= " target=\"".$this->csimwintargets[$i]."\" ";
}
if( !empty($this->csimalts[$i]) ) {
$tmp=sprintf($this->csimalts[$i],$this->data[$i]);
$this->csimareas .= "alt=\"$tmp\" title=\"$tmp\" ";
}
$this->csimareas .= " />\n";
}
}
function SetLabels($aLabels,$aLblPosAdj="auto") {
$this->labels = $aLabels;
$this->ilabelposadj=$aLblPosAdj;
}
// Distance from the pie to the labels
function SetLabelMargin($m) {
$this->value->SetMargin($m);
}
// Show a thin line from the pie to the label for a specific slice
function ShowLabelHint($f=true) {
$this->showlabelhint=$f;
}
// Set color of hint line to label for each slice
function SetLabelHintColor($c) {
$this->labelhintcolor=$c;
}
function SetHeight($aHeight) {
$this->iThickness = $aHeight;
}
// Normalize Angle between 0-360
function NormAngle($a) {
// Normalize anle to 0 to 2M_PI
//
if( $a > 0 ) {
while($a > 360) $a -= 360;
}
else {
while($a < 0) $a += 360;
}
if( $a < 0 )
$a = 360 + $a;
if( $a == 360 ) $a=0;
return $a;
}
// Draw one 3D pie slice at position ($xc,$yc) with height $z
function Pie3DSlice($img,$xc,$yc,$w,$h,$sa,$ea,$z,$fillcolor,$shadow=0.65) {
// Due to the way the 3D Pie algorithm works we are
// guaranteed that any slice we get into this method
// belongs to either the left or right side of the
// pie ellipse. Hence, no slice will cross 90 or 270
// point.
if( ($sa < 90 && $ea > 90) || ( ($sa > 90 && $sa < 270) && $ea > 270) ) {
JpGraphError::RaiseL(14003);//('Internal assertion failed. Pie3D::Pie3DSlice');
exit(1);
}
$p[] = array();
// Setup pre-calculated values
$rsa = $sa/180*M_PI; // to Rad
$rea = $ea/180*M_PI; // to Rad
$sinsa = sin($rsa);
$cossa = cos($rsa);
$sinea = sin($rea);
$cosea = cos($rea);
// p[] is the points for the overall slice and
// pt[] is the points for the top pie
// Angular step when approximating the arc with a polygon train.
$step = 0.05;
if( $sa >= 270 ) {
if( $ea > 360 || ($ea > 0 && $ea <= 90) ) {
if( $ea > 0 && $ea <= 90 ) {
// Adjust angle to simplify conditions in loops
$rea += 2*M_PI;
}
$p = array($xc,$yc,$xc,$yc+$z,
$xc+$w*$cossa,$z+$yc-$h*$sinsa);
$pt = array($xc,$yc,$xc+$w*$cossa,$yc-$h*$sinsa);
for( $a=$rsa; $a < 2*M_PI; $a += $step ) {
$tca = cos($a);
$tsa = sin($a);
$p[] = $xc+$w*$tca;
$p[] = $z+$yc-$h*$tsa;
$pt[] = $xc+$w*$tca;
$pt[] = $yc-$h*$tsa;
}
$pt[] = $xc+$w;
$pt[] = $yc;
$p[] = $xc+$w;
$p[] = $z+$yc;
$p[] = $xc+$w;
$p[] = $yc;
$p[] = $xc;
$p[] = $yc;
for( $a=2*M_PI+$step; $a < $rea; $a += $step ) {
$pt[] = $xc + $w*cos($a);
$pt[] = $yc - $h*sin($a);
}
$pt[] = $xc+$w*$cosea;
$pt[] = $yc-$h*$sinea;
$pt[] = $xc;
$pt[] = $yc;
}
else {
$p = array($xc,$yc,$xc,$yc+$z,
$xc+$w*$cossa,$z+$yc-$h*$sinsa);
$pt = array($xc,$yc,$xc+$w*$cossa,$yc-$h*$sinsa);
$rea = $rea == 0.0 ? 2*M_PI : $rea;
for( $a=$rsa; $a < $rea; $a += $step ) {
$tca = cos($a);
$tsa = sin($a);
$p[] = $xc+$w*$tca;
$p[] = $z+$yc-$h*$tsa;
$pt[] = $xc+$w*$tca;
$pt[] = $yc-$h*$tsa;
}
$pt[] = $xc+$w*$cosea;
$pt[] = $yc-$h*$sinea;
$pt[] = $xc;
$pt[] = $yc;
$p[] = $xc+$w*$cosea;
$p[] = $z+$yc-$h*$sinea;
$p[] = $xc+$w*$cosea;
$p[] = $yc-$h*$sinea;
$p[] = $xc;
$p[] = $yc;
}
}
elseif( $sa >= 180 ) {
$p = array($xc,$yc,$xc,$yc+$z,$xc+$w*$cosea,$z+$yc-$h*$sinea);
$pt = array($xc,$yc,$xc+$w*$cosea,$yc-$h*$sinea);
for( $a=$rea; $a>$rsa; $a -= $step ) {
$tca = cos($a);
$tsa = sin($a);
$p[] = $xc+$w*$tca;
$p[] = $z+$yc-$h*$tsa;
$pt[] = $xc+$w*$tca;
$pt[] = $yc-$h*$tsa;
}
$pt[] = $xc+$w*$cossa;
$pt[] = $yc-$h*$sinsa;
$pt[] = $xc;
$pt[] = $yc;
$p[] = $xc+$w*$cossa;
$p[] = $z+$yc-$h*$sinsa;
$p[] = $xc+$w*$cossa;
$p[] = $yc-$h*$sinsa;
$p[] = $xc;
$p[] = $yc;
}
elseif( $sa >= 90 ) {
if( $ea > 180 ) {
$p = array($xc,$yc,$xc,$yc+$z,$xc+$w*$cosea,$z+$yc-$h*$sinea);
$pt = array($xc,$yc,$xc+$w*$cosea,$yc-$h*$sinea);
for( $a=$rea; $a > M_PI; $a -= $step ) {
$tca = cos($a);
$tsa = sin($a);
$p[] = $xc+$w*$tca;
$p[] = $z + $yc - $h*$tsa;
$pt[] = $xc+$w*$tca;
$pt[] = $yc-$h*$tsa;
}
$p[] = $xc-$w;
$p[] = $z+$yc;
$p[] = $xc-$w;
$p[] = $yc;
$p[] = $xc;
$p[] = $yc;
$pt[] = $xc-$w;
$pt[] = $z+$yc;
$pt[] = $xc-$w;
$pt[] = $yc;
for( $a=M_PI-$step; $a > $rsa; $a -= $step ) {
$pt[] = $xc + $w*cos($a);
$pt[] = $yc - $h*sin($a);
}
$pt[] = $xc+$w*$cossa;
$pt[] = $yc-$h*$sinsa;
$pt[] = $xc;
$pt[] = $yc;
}
else { // $sa >= 90 && $ea <= 180
$p = array($xc,$yc,$xc,$yc+$z,
$xc+$w*$cosea,$z+$yc-$h*$sinea,
$xc+$w*$cosea,$yc-$h*$sinea,
$xc,$yc);
$pt = array($xc,$yc,$xc+$w*$cosea,$yc-$h*$sinea);
for( $a=$rea; $a>$rsa; $a -= $step ) {
$pt[] = $xc + $w*cos($a);
$pt[] = $yc - $h*sin($a);
}
$pt[] = $xc+$w*$cossa;
$pt[] = $yc-$h*$sinsa;
$pt[] = $xc;
$pt[] = $yc;
}
}
else { // sa > 0 && ea < 90
$p = array($xc,$yc,$xc,$yc+$z,
$xc+$w*$cossa,$z+$yc-$h*$sinsa,
$xc+$w*$cossa,$yc-$h*$sinsa,
$xc,$yc);
$pt = array($xc,$yc,$xc+$w*$cossa,$yc-$h*$sinsa);
for( $a=$rsa; $a < $rea; $a += $step ) {
$pt[] = $xc + $w*cos($a);
$pt[] = $yc - $h*sin($a);
}
$pt[] = $xc+$w*$cosea;
$pt[] = $yc-$h*$sinea;
$pt[] = $xc;
$pt[] = $yc;
}
$img->PushColor($fillcolor.":".$shadow);
$img->FilledPolygon($p);
$img->PopColor();
$img->PushColor($fillcolor);
$img->FilledPolygon($pt);
$img->PopColor();
}
function SetStartAngle($aStart) {
if( $aStart < 0 || $aStart > 360 ) {
JpGraphError::RaiseL(14004);//('Slice start angle must be between 0 and 360 degrees.');
}
$this->startangle = $aStart;
}
// Draw a 3D Pie
function Pie3D($aaoption,$img,$data,$colors,$xc,$yc,$d,$angle,$z,
$shadow=0.65,$startangle=0,$edgecolor="",$edgeweight=1) {
//---------------------------------------------------------------------------
// As usual the algorithm get more complicated than I originally
// envisioned. I believe that this is as simple as it is possible
// to do it with the features I want. It's a good exercise to start
// thinking on how to do this to convince your self that all this
// is really needed for the general case.
//
// The algorithm two draw 3D pies without "real 3D" is done in
// two steps.
// First imagine the pie cut in half through a thought line between
// 12'a clock and 6'a clock. It now easy to imagine that we can plot
// the individual slices for each half by starting with the topmost
// pie slice and continue down to 6'a clock.
//
// In the algortithm this is done in three principal steps
// Step 1. Do the knife cut to ensure by splitting slices that extends
// over the cut line. This is done by splitting the original slices into
// upto 3 subslices.
// Step 2. Find the top slice for each half
// Step 3. Draw the slices from top to bottom
//
// The thing that slightly complicates this scheme with all the
// angle comparisons below is that we can have an arbitrary start
// angle so we must take into account the different equivalence classes.
// For the same reason we must walk through the angle array in a
// modulo fashion.
//
// Limitations of algorithm:
// * A small exploded slice which crosses the 270 degree point
// will get slightly nagged close to the center due to the fact that
// we print the slices in Z-order and that the slice left part
// get printed first and might get slightly nagged by a larger
// slice on the right side just before the right part of the small
// slice. Not a major problem though.
//---------------------------------------------------------------------------
// Determine the height of the ellippse which gives an
// indication of the inclination angle
$h = ($angle/90.0)*$d;
$sum = 0;
for($i=0; $ilabeltype == 2 ) {
$this->adjusted_data = $this->AdjPercentage($data);
}
// Setup the start
$accsum = 0;
$a = $startangle;
$a = $this->NormAngle($a);
//
// Step 1 . Split all slices that crosses 90 or 270
//
$idx=0;
$adjexplode=array();
$numcolors = count($colors);
for($i=0; $iexplode_radius[$i]) ) {
$this->explode_radius[$i]=0;
}
$expscale=1;
if( $aaoption == 1 ) {
$expscale=2;
}
$la = $a + $da/2;
$explode = array( $xc + $this->explode_radius[$i]*cos($la*M_PI/180)*$expscale,
$yc - $this->explode_radius[$i]*sin($la*M_PI/180) * ($h/$d) *$expscale );
$adjexplode[$idx] = $explode;
$labeldata[$i] = array($la,$explode[0],$explode[1]);
$originalangles[$i] = array($a,$a+$da);
$ne = $this->NormAngle($a+$da);
if( $da <= 180 ) {
// If the slice size is <= 90 it can at maximum cut across
// one boundary (either 90 or 270) where it needs to be split
$split=-1; // no split
if( ($da<=90 && ($a <= 90 && $ne > 90)) ||
(($da <= 180 && $da >90) && (($a < 90 || $a >= 270) && $ne > 90)) ) {
$split = 90;
}
elseif( ($da<=90 && ($a <= 270 && $ne > 270)) ||
(($da<=180 && $da>90) && ($a >= 90 && $a < 270 && ($a+$da) > 270 )) ) {
$split = 270;
}
if( $split > 0 ) { // split in two
$angles[$idx] = array($a,$split);
$adjcolors[$idx] = $colors[$i % $numcolors];
$adjexplode[$idx] = $explode;
$angles[++$idx] = array($split,$ne);
$adjcolors[$idx] = $colors[$i % $numcolors];
$adjexplode[$idx] = $explode;
}
else { // no split
$angles[$idx] = array($a,$ne);
$adjcolors[$idx] = $colors[$i % $numcolors];
$adjexplode[$idx] = $explode;
}
}
else {
// da>180
// Slice may, depending on position, cross one or two
// bonudaries
if( $a < 90 ) $split = 90;
elseif( $a <= 270 ) $split = 270;
else $split = 90;
$angles[$idx] = array($a,$split);
$adjcolors[$idx] = $colors[$i % $numcolors];
$adjexplode[$idx] = $explode;
//if( $a+$da > 360-$split ) {
// For slices larger than 270 degrees we might cross
// another boundary as well. This means that we must
// split the slice further. The comparison gets a little
// bit complicated since we must take into accound that
// a pie might have a startangle >0 and hence a slice might
// wrap around the 0 angle.
// Three cases:
// a) Slice starts before 90 and hence gets a split=90, but
// we must also check if we need to split at 270
// b) Slice starts after 90 but before 270 and slices
// crosses 90 (after a wrap around of 0)
// c) If start is > 270 (hence the firstr split is at 90)
// and the slice is so large that it goes all the way
// around 270.
if( ($a < 90 && ($a+$da > 270)) || ($a > 90 && $a<=270 && ($a+$da>360+90) ) || ($a > 270 && $this->NormAngle($a+$da)>270) ) {
$angles[++$idx] = array($split,360-$split);
$adjcolors[$idx] = $colors[$i % $numcolors];
$adjexplode[$idx] = $explode;
$angles[++$idx] = array(360-$split,$ne);
$adjcolors[$idx] = $colors[$i % $numcolors];
$adjexplode[$idx] = $explode;
}
else {
// Just a simple split to the previous decided
// angle.
$angles[++$idx] = array($split,$ne);
$adjcolors[$idx] = $colors[$i % $numcolors];
$adjexplode[$idx] = $explode;
}
}
$a += $da;
$a = $this->NormAngle($a);
}
// Total number of slices
$n = count($angles);
for($i=0; $i<$n; ++$i) {
list($dbgs,$dbge) = $angles[$i];
}
//
// Step 2. Find start index (first pie that starts in upper left quadrant)
//
$minval = $angles[0][0];
$min = 0;
for( $i=0; $i<$n; ++$i ) {
if( $angles[$i][0] < $minval ) {
$minval = $angles[$i][0];
$min = $i;
}
}
$j = $min;
$cnt = 0;
while( $angles[$j][1] <= 90 ) {
$j++;
if( $j>=$n) {
$j=0;
}
if( $cnt > $n ) {
JpGraphError::RaiseL(14005);
//("Pie3D Internal error (#1). Trying to wrap twice when looking for start index");
}
++$cnt;
}
$start = $j;
//
// Step 3. Print slices in z-order
//
$cnt = 0;
// First stroke all the slices between 90 and 270 (left half circle)
// counterclockwise
while( $angles[$j][0] < 270 && $aaoption !== 2 ) {
list($x,$y) = $adjexplode[$j];
$this->Pie3DSlice($img,$x,$y,$d,$h,$angles[$j][0],$angles[$j][1],
$z,$adjcolors[$j],$shadow);
$last = array($x,$y,$j);
$j++;
if( $j >= $n ) $j=0;
if( $cnt > $n ) {
JpGraphError::RaiseL(14006);
//("Pie3D Internal Error: Z-Sorting algorithm for 3D Pies is not working properly (2). Trying to wrap twice while stroking.");
}
++$cnt;
}
$slice_left = $n-$cnt;
$j=$start-1;
if($j<0) $j=$n-1;
$cnt = 0;
// The stroke all slices from 90 to -90 (right half circle)
// clockwise
while( $cnt < $slice_left && $aaoption !== 2 ) {
list($x,$y) = $adjexplode[$j];
$this->Pie3DSlice($img,$x,$y,$d,$h,$angles[$j][0],$angles[$j][1],
$z,$adjcolors[$j],$shadow);
$j--;
if( $cnt > $n ) {
JpGraphError::RaiseL(14006);
//("Pie3D Internal Error: Z-Sorting algorithm for 3D Pies is not working properly (2). Trying to wrap twice while stroking.");
}
if($j<0) $j=$n-1;
$cnt++;
}
// Now do a special thing. Stroke the last slice on the left
// halfcircle one more time. This is needed in the case where
// the slice close to 270 have been exploded. In that case the
// part of the slice close to the center of the pie might be
// slightly nagged.
if( $aaoption !== 2 )
$this->Pie3DSlice($img,$last[0],$last[1],$d,$h,$angles[$last[2]][0],
$angles[$last[2]][1],$z,$adjcolors[$last[2]],$shadow);
if( $aaoption !== 1 ) {
// Now print possible labels and add csim
$this->value->ApplyFont($img);
$margin = $img->GetFontHeight()/2 + $this->value->margin ;
for($i=0; $i < count($data); ++$i ) {
$la = $labeldata[$i][0];
$x = $labeldata[$i][1] + cos($la*M_PI/180)*($d+$margin)*$this->ilabelposadj;
$y = $labeldata[$i][2] - sin($la*M_PI/180)*($h+$margin)*$this->ilabelposadj;
if( $this->ilabelposadj >= 1.0 ) {
if( $la > 180 && $la < 360 ) $y += $z;
}
if( $this->labeltype == 0 ) {
if( $sum > 0 ) $l = 100*$data[$i]/$sum;
else $l = 0;
}
elseif( $this->labeltype == 1 ) {
$l = $data[$i];
}
else {
$l = $this->adjusted_data[$i];
}
if( isset($this->labels[$i]) && is_string($this->labels[$i]) ) {
$l=sprintf($this->labels[$i],$l);
}
$this->StrokeLabels($l,$img,$labeldata[$i][0]*M_PI/180,$x,$y,$z);
$this->Add3DSliceToCSIM($i,$labeldata[$i][1],$labeldata[$i][2],$h*2,$d*2,$z,
$originalangles[$i][0],$originalangles[$i][1]);
}
}
//
// Finally add potential lines in pie
//
if( $edgecolor=="" || $aaoption !== 0 ) return;
$accsum = 0;
$a = $startangle;
$a = $this->NormAngle($a);
$a *= M_PI/180.0;
$idx=0;
$img->PushColor($edgecolor);
$img->SetLineWeight($edgeweight);
$fulledge = true;
for($i=0; $i < count($data) && $fulledge; ++$i ) {
if( empty($this->explode_radius[$i]) ) {
$this->explode_radius[$i]=0;
}
if( $this->explode_radius[$i] > 0 ) {
$fulledge = false;
}
}
for($i=0; $i < count($data); ++$i, ++$idx ) {
$da = $data[$i]/$sum * 2*M_PI;
$this->StrokeFullSliceFrame($img,$xc,$yc,$a,$a+$da,$d,$h,$z,$edgecolor,
$this->explode_radius[$i],$fulledge);
$a += $da;
}
$img->PopColor();
}
function StrokeFullSliceFrame($img,$xc,$yc,$sa,$ea,$w,$h,$z,$edgecolor,$exploderadius,$fulledge) {
$step = 0.02;
if( $exploderadius > 0 ) {
$la = ($sa+$ea)/2;
$xc += $exploderadius*cos($la);
$yc -= $exploderadius*sin($la) * ($h/$w) ;
}
$p = array($xc,$yc,$xc+$w*cos($sa),$yc-$h*sin($sa));
for($a=$sa; $a < $ea; $a += $step ) {
$p[] = $xc + $w*cos($a);
$p[] = $yc - $h*sin($a);
}
$p[] = $xc+$w*cos($ea);
$p[] = $yc-$h*sin($ea);
$p[] = $xc;
$p[] = $yc;
$img->SetColor($edgecolor);
$img->Polygon($p);
// Unfortunately we can't really draw the full edge around the whole of
// of the slice if any of the slices are exploded. The reason is that
// this algorithm is to simply. There are cases where the edges will
// "overwrite" other slices when they have been exploded.
// Doing the full, proper 3D hidden lines stiff is actually quite
// tricky. So for exploded pies we only draw the top edge. Not perfect
// but the "real" solution is much more complicated.
if( $fulledge && !( $sa > 0 && $sa < M_PI && $ea < M_PI) ) {
if($sa < M_PI && $ea > M_PI) {
$sa = M_PI;
}
if($sa < 2*M_PI && (($ea >= 2*M_PI) || ($ea > 0 && $ea < $sa ) ) ) {
$ea = 2*M_PI;
}
if( $sa >= M_PI && $ea <= 2*M_PI ) {
$p = array($xc + $w*cos($sa),$yc - $h*sin($sa),
$xc + $w*cos($sa),$z + $yc - $h*sin($sa));
for($a=$sa+$step; $a < $ea; $a += $step ) {
$p[] = $xc + $w*cos($a);
$p[] = $z + $yc - $h*sin($a);
}
$p[] = $xc + $w*cos($ea);
$p[] = $z + $yc - $h*sin($ea);
$p[] = $xc + $w*cos($ea);
$p[] = $yc - $h*sin($ea);
$img->SetColor($edgecolor);
$img->Polygon($p);
}
}
}
function Stroke($img,$aaoption=0) {
$n = count($this->data);
// If user hasn't set the colors use the theme array
if( $this->setslicecolors==null ) {
$colors = array_keys($img->rgb->rgb_table);
sort($colors);
$idx_a=$this->themearr[$this->theme];
$ca = array();
$m = count($idx_a);
for($i=0; $i < $m; ++$i) {
$ca[$i] = $colors[$idx_a[$i]];
}
$ca = array_reverse(array_slice($ca,0,$n));
}
else {
$ca = $this->setslicecolors;
}
if( $this->posx <= 1 && $this->posx > 0 ) {
$xc = round($this->posx*$img->width);
}
else {
$xc = $this->posx ;
}
if( $this->posy <= 1 && $this->posy > 0 ) {
$yc = round($this->posy*$img->height);
}
else {
$yc = $this->posy ;
}
if( $this->radius <= 1 ) {
$width = floor($this->radius*min($img->width,$img->height));
// Make sure that the pie doesn't overflow the image border
// The 0.9 factor is simply an extra margin to leave some space
// between the pie an the border of the image.
$width = min($width,min($xc*0.9,($yc*90/$this->angle-$width/4)*0.9));
}
else {
$width = $this->radius * ($aaoption === 1 ? 2 : 1 ) ;
}
// Add a sanity check for width
if( $width < 1 ) {
JpGraphError::RaiseL(14007);//("Width for 3D Pie is 0. Specify a size > 0");
}
// Establish a thickness. By default the thickness is a fifth of the
// pie slice width (=pie radius) but since the perspective depends
// on the inclination angle we use some heuristics to make the edge
// slightly thicker the less the angle.
// Has user specified an absolute thickness? In that case use
// that instead
if( $this->iThickness ) {
$thick = $this->iThickness;
$thick *= ($aaoption === 1 ? 2 : 1 );
}
else {
$thick = $width/12;
}
$a = $this->angle;
if( $a <= 30 ) $thick *= 1.6;
elseif( $a <= 40 ) $thick *= 1.4;
elseif( $a <= 50 ) $thick *= 1.2;
elseif( $a <= 60 ) $thick *= 1.0;
elseif( $a <= 70 ) $thick *= 0.8;
elseif( $a <= 80 ) $thick *= 0.7;
else $thick *= 0.6;
$thick = floor($thick);
if( $this->explode_all ) {
for($i=0; $i < $n; ++$i)
$this->explode_radius[$i]=$this->explode_r;
}
$this->Pie3D($aaoption,$img,$this->data, $ca, $xc, $yc, $width, $this->angle,
$thick, 0.65, $this->startangle, $this->edgecolor, $this->edgeweight);
// Adjust title position
if( $aaoption != 1 ) {
$this->title->SetPos($xc,$yc-$this->title->GetFontHeight($img)-$width/2-$this->title->margin, "center","bottom");
$this->title->Stroke($img);
}
}
//---------------
// PRIVATE METHODS
// Position the labels of each slice
function StrokeLabels($label,$img,$a,$xp,$yp,$z) {
$this->value->halign="left";
$this->value->valign="top";
// Position the axis title.
// dx, dy is the offset from the top left corner of the bounding box that sorrounds the text
// that intersects with the extension of the corresponding axis. The code looks a little
// bit messy but this is really the only way of having a reasonable position of the
// axis titles.
$this->value->ApplyFont($img);
$h=$img->GetTextHeight($label);
// For numeric values the format of the display value
// must be taken into account
if( is_numeric($label) ) {
if( $label >= 0 ) {
$w=$img->GetTextWidth(sprintf($this->value->format,$label));
}
else {
$w=$img->GetTextWidth(sprintf($this->value->negformat,$label));
}
}
else {
$w=$img->GetTextWidth($label);
}
while( $a > 2*M_PI ) {
$a -= 2*M_PI;
}
if( $a>=7*M_PI/4 || $a <= M_PI/4 ) $dx=0;
if( $a>=M_PI/4 && $a <= 3*M_PI/4 ) $dx=($a-M_PI/4)*2/M_PI;
if( $a>=3*M_PI/4 && $a <= 5*M_PI/4 ) $dx=1;
if( $a>=5*M_PI/4 && $a <= 7*M_PI/4 ) $dx=(1-($a-M_PI*5/4)*2/M_PI);
if( $a>=7*M_PI/4 ) $dy=(($a-M_PI)-3*M_PI/4)*2/M_PI;
if( $a<=M_PI/4 ) $dy=(1-$a*2/M_PI);
if( $a>=M_PI/4 && $a <= 3*M_PI/4 ) $dy=1;
if( $a>=3*M_PI/4 && $a <= 5*M_PI/4 ) $dy=(1-($a-3*M_PI/4)*2/M_PI);
if( $a>=5*M_PI/4 && $a <= 7*M_PI/4 ) $dy=0;
$x = round($xp-$dx*$w);
$y = round($yp-$dy*$h);
// Mark anchor point for debugging
/*
$img->SetColor('red');
$img->Line($xp-10,$yp,$xp+10,$yp);
$img->Line($xp,$yp-10,$xp,$yp+10);
*/
$oldmargin = $this->value->margin;
$this->value->margin=0;
$this->value->Stroke($img,$label,$x,$y);
$this->value->margin=$oldmargin;
}
} // Class
/* EOF */
?>