1 | <?php
|
---|
2 | /*=======================================================================
|
---|
3 | // File: JPGRAPH_REGSTAT.PHP
|
---|
4 | // Description: Regression and statistical analysis helper classes
|
---|
5 | // Created: 2002-12-01
|
---|
6 | // Ver: $Id: jpgraph_regstat.php 1131 2009-03-11 20:08:24Z ljp $
|
---|
7 | //
|
---|
8 | // Copyright (c) Asial Corporation. All rights reserved.
|
---|
9 | //========================================================================
|
---|
10 | */
|
---|
11 |
|
---|
12 | //------------------------------------------------------------------------
|
---|
13 | // CLASS Spline
|
---|
14 | // Create a new data array from an existing data array but with more points.
|
---|
15 | // The new points are interpolated using a cubic spline algorithm
|
---|
16 | //------------------------------------------------------------------------
|
---|
17 | class Spline {
|
---|
18 | // 3:rd degree polynom approximation
|
---|
19 |
|
---|
20 | private $xdata,$ydata; // Data vectors
|
---|
21 | private $y2; // 2:nd derivate of ydata
|
---|
22 | private $n=0;
|
---|
23 |
|
---|
24 | function __construct($xdata,$ydata) {
|
---|
25 | $this->y2 = array();
|
---|
26 | $this->xdata = $xdata;
|
---|
27 | $this->ydata = $ydata;
|
---|
28 |
|
---|
29 | $n = count($ydata);
|
---|
30 | $this->n = $n;
|
---|
31 | if( $this->n !== count($xdata) ) {
|
---|
32 | JpGraphError::RaiseL(19001);
|
---|
33 | //('Spline: Number of X and Y coordinates must be the same');
|
---|
34 | }
|
---|
35 |
|
---|
36 | // Natural spline 2:derivate == 0 at endpoints
|
---|
37 | $this->y2[0] = 0.0;
|
---|
38 | $this->y2[$n-1] = 0.0;
|
---|
39 | $delta[0] = 0.0;
|
---|
40 |
|
---|
41 | // Calculate 2:nd derivate
|
---|
42 | for($i=1; $i < $n-1; ++$i) {
|
---|
43 | $d = ($xdata[$i+1]-$xdata[$i-1]);
|
---|
44 | if( $d == 0 ) {
|
---|
45 | JpGraphError::RaiseL(19002);
|
---|
46 | //('Invalid input data for spline. Two or more consecutive input X-values are equal. Each input X-value must differ since from a mathematical point of view it must be a one-to-one mapping, i.e. each X-value must correspond to exactly one Y-value.');
|
---|
47 | }
|
---|
48 | $s = ($xdata[$i]-$xdata[$i-1])/$d;
|
---|
49 | $p = $s*$this->y2[$i-1]+2.0;
|
---|
50 | $this->y2[$i] = ($s-1.0)/$p;
|
---|
51 | $delta[$i] = ($ydata[$i+1]-$ydata[$i])/($xdata[$i+1]-$xdata[$i]) -
|
---|
52 | ($ydata[$i]-$ydata[$i-1])/($xdata[$i]-$xdata[$i-1]);
|
---|
53 | $delta[$i] = (6.0*$delta[$i]/($xdata[$i+1]-$xdata[$i-1])-$s*$delta[$i-1])/$p;
|
---|
54 | }
|
---|
55 |
|
---|
56 | // Backward substitution
|
---|
57 | for( $j=$n-2; $j >= 0; --$j ) {
|
---|
58 | $this->y2[$j] = $this->y2[$j]*$this->y2[$j+1] + $delta[$j];
|
---|
59 | }
|
---|
60 | }
|
---|
61 |
|
---|
62 | // Return the two new data vectors
|
---|
63 | function Get($num=50) {
|
---|
64 | $n = $this->n ;
|
---|
65 | $step = ($this->xdata[$n-1]-$this->xdata[0]) / ($num-1);
|
---|
66 | $xnew=array();
|
---|
67 | $ynew=array();
|
---|
68 | $xnew[0] = $this->xdata[0];
|
---|
69 | $ynew[0] = $this->ydata[0];
|
---|
70 | for( $j=1; $j < $num; ++$j ) {
|
---|
71 | $xnew[$j] = $xnew[0]+$j*$step;
|
---|
72 | $ynew[$j] = $this->Interpolate($xnew[$j]);
|
---|
73 | }
|
---|
74 | return array($xnew,$ynew);
|
---|
75 | }
|
---|
76 |
|
---|
77 | // Return a single interpolated Y-value from an x value
|
---|
78 | function Interpolate($xpoint) {
|
---|
79 |
|
---|
80 | $max = $this->n-1;
|
---|
81 | $min = 0;
|
---|
82 |
|
---|
83 | // Binary search to find interval
|
---|
84 | while( $max-$min > 1 ) {
|
---|
85 | $k = ($max+$min) / 2;
|
---|
86 | if( $this->xdata[$k] > $xpoint )
|
---|
87 | $max=$k;
|
---|
88 | else
|
---|
89 | $min=$k;
|
---|
90 | }
|
---|
91 |
|
---|
92 | // Each interval is interpolated by a 3:degree polynom function
|
---|
93 | $h = $this->xdata[$max]-$this->xdata[$min];
|
---|
94 |
|
---|
95 | if( $h == 0 ) {
|
---|
96 | JpGraphError::RaiseL(19002);
|
---|
97 | //('Invalid input data for spline. Two or more consecutive input X-values are equal. Each input X-value must differ since from a mathematical point of view it must be a one-to-one mapping, i.e. each X-value must correspond to exactly one Y-value.');
|
---|
98 | }
|
---|
99 |
|
---|
100 |
|
---|
101 | $a = ($this->xdata[$max]-$xpoint)/$h;
|
---|
102 | $b = ($xpoint-$this->xdata[$min])/$h;
|
---|
103 | return $a*$this->ydata[$min]+$b*$this->ydata[$max]+
|
---|
104 | (($a*$a*$a-$a)*$this->y2[$min]+($b*$b*$b-$b)*$this->y2[$max])*($h*$h)/6.0;
|
---|
105 | }
|
---|
106 | }
|
---|
107 |
|
---|
108 | //------------------------------------------------------------------------
|
---|
109 | // CLASS Bezier
|
---|
110 | // Create a new data array from a number of control points
|
---|
111 | //------------------------------------------------------------------------
|
---|
112 | class Bezier {
|
---|
113 | /**
|
---|
114 | * @author Thomas Despoix, openXtrem company
|
---|
115 | * @license released under QPL
|
---|
116 | * @abstract Bezier interoplated point generation,
|
---|
117 | * computed from control points data sets, based on Paul Bourke algorithm :
|
---|
118 | * http://local.wasp.uwa.edu.au/~pbourke/geometry/bezier/index2.html
|
---|
119 | */
|
---|
120 | private $datax = array();
|
---|
121 | private $datay = array();
|
---|
122 | private $n=0;
|
---|
123 |
|
---|
124 | function __construct($datax, $datay, $attraction_factor = 1) {
|
---|
125 | // Adding control point multiple time will raise their attraction power over the curve
|
---|
126 | $this->n = count($datax);
|
---|
127 | if( $this->n !== count($datay) ) {
|
---|
128 | JpGraphError::RaiseL(19003);
|
---|
129 | //('Bezier: Number of X and Y coordinates must be the same');
|
---|
130 | }
|
---|
131 | $idx=0;
|
---|
132 | foreach($datax as $datumx) {
|
---|
133 | for ($i = 0; $i < $attraction_factor; $i++) {
|
---|
134 | $this->datax[$idx++] = $datumx;
|
---|
135 | }
|
---|
136 | }
|
---|
137 | $idx=0;
|
---|
138 | foreach($datay as $datumy) {
|
---|
139 | for ($i = 0; $i < $attraction_factor; $i++) {
|
---|
140 | $this->datay[$idx++] = $datumy;
|
---|
141 | }
|
---|
142 | }
|
---|
143 | $this->n *= $attraction_factor;
|
---|
144 | }
|
---|
145 |
|
---|
146 | /**
|
---|
147 | * Return a set of data points that specifies the bezier curve with $steps points
|
---|
148 | * @param $steps Number of new points to return
|
---|
149 | * @return array($datax, $datay)
|
---|
150 | */
|
---|
151 | function Get($steps) {
|
---|
152 | $datax = array();
|
---|
153 | $datay = array();
|
---|
154 | for ($i = 0; $i < $steps; $i++) {
|
---|
155 | list($datumx, $datumy) = $this->GetPoint((double) $i / (double) $steps);
|
---|
156 | $datax[$i] = $datumx;
|
---|
157 | $datay[$i] = $datumy;
|
---|
158 | }
|
---|
159 |
|
---|
160 | $datax[] = end($this->datax);
|
---|
161 | $datay[] = end($this->datay);
|
---|
162 |
|
---|
163 | return array($datax, $datay);
|
---|
164 | }
|
---|
165 |
|
---|
166 | /**
|
---|
167 | * Return one point on the bezier curve. $mu is the position on the curve where $mu is in the
|
---|
168 | * range 0 $mu < 1 where 0 is tha start point and 1 is the end point. Note that every newly computed
|
---|
169 | * point depends on all the existing points
|
---|
170 | *
|
---|
171 | * @param $mu Position on the bezier curve
|
---|
172 | * @return array($x, $y)
|
---|
173 | */
|
---|
174 | function GetPoint($mu) {
|
---|
175 | $n = $this->n - 1;
|
---|
176 | $k = 0;
|
---|
177 | $kn = 0;
|
---|
178 | $nn = 0;
|
---|
179 | $nkn = 0;
|
---|
180 | $blend = 0.0;
|
---|
181 | $newx = 0.0;
|
---|
182 | $newy = 0.0;
|
---|
183 |
|
---|
184 | $muk = 1.0;
|
---|
185 | $munk = (double) pow(1-$mu,(double) $n);
|
---|
186 |
|
---|
187 | for ($k = 0; $k <= $n; $k++) {
|
---|
188 | $nn = $n;
|
---|
189 | $kn = $k;
|
---|
190 | $nkn = $n - $k;
|
---|
191 | $blend = $muk * $munk;
|
---|
192 | $muk *= $mu;
|
---|
193 | $munk /= (1-$mu);
|
---|
194 | while ($nn >= 1) {
|
---|
195 | $blend *= $nn;
|
---|
196 | $nn--;
|
---|
197 | if ($kn > 1) {
|
---|
198 | $blend /= (double) $kn;
|
---|
199 | $kn--;
|
---|
200 | }
|
---|
201 | if ($nkn > 1) {
|
---|
202 | $blend /= (double) $nkn;
|
---|
203 | $nkn--;
|
---|
204 | }
|
---|
205 | }
|
---|
206 | $newx += $this->datax[$k] * $blend;
|
---|
207 | $newy += $this->datay[$k] * $blend;
|
---|
208 | }
|
---|
209 |
|
---|
210 | return array($newx, $newy);
|
---|
211 | }
|
---|
212 | }
|
---|
213 |
|
---|
214 | // EOF
|
---|
215 | ?>
|
---|